0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2024-12-27 19:25:47 +00:00
Ryujinx/Ryujinx.HLE/HOS/Services/Time/IStaticServiceForPsc.cs

425 lines
18 KiB
C#
Raw Normal View History

using Ryujinx.Common;
using Ryujinx.Cpu;
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.HLE.HOS.Services.Time.Clock;
using Ryujinx.HLE.HOS.Services.Time.StaticService;
using Ryujinx.HLE.HOS.Services.Time.TimeZone;
using System;
using System.Diagnostics;
using System.IO;
using System.Runtime.InteropServices;
namespace Ryujinx.HLE.HOS.Services.Time
{
[Service("time:s", TimePermissions.System)]
[Service("time:su", TimePermissions.SystemUpdate)]
class IStaticServiceForPsc : IpcService
{
private TimeManager _timeManager;
private TimePermissions _permissions;
private int _timeSharedMemoryNativeHandle = 0;
public IStaticServiceForPsc(ServiceCtx context, TimePermissions permissions) : this(TimeManager.Instance, permissions) {}
public IStaticServiceForPsc(TimeManager manager, TimePermissions permissions)
{
_permissions = permissions;
_timeManager = manager;
}
[CommandHipc(0)]
// GetStandardUserSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetStandardUserSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(_timeManager.StandardUserSystemClock,
(_permissions & TimePermissions.UserSystemClockWritableMask) != 0,
(_permissions & TimePermissions.BypassUninitialized) != 0));
return ResultCode.Success;
}
[CommandHipc(1)]
// GetStandardNetworkSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetStandardNetworkSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(_timeManager.StandardNetworkSystemClock,
(_permissions & TimePermissions.NetworkSystemClockWritableMask) != 0,
(_permissions & TimePermissions.BypassUninitialized) != 0));
return ResultCode.Success;
}
[CommandHipc(2)]
// GetStandardSteadyClock() -> object<nn::timesrv::detail::service::ISteadyClock>
public ResultCode GetStandardSteadyClock(ServiceCtx context)
{
MakeObject(context, new ISteadyClock(_timeManager.StandardSteadyClock,
(_permissions & TimePermissions.SteadyClockWritableMask) != 0,
(_permissions & TimePermissions.BypassUninitialized) != 0));
return ResultCode.Success;
}
[CommandHipc(3)]
// GetTimeZoneService() -> object<nn::timesrv::detail::service::ITimeZoneService>
public ResultCode GetTimeZoneService(ServiceCtx context)
{
MakeObject(context, new ITimeZoneServiceForPsc(_timeManager.TimeZone.Manager,
(_permissions & TimePermissions.TimeZoneWritableMask) != 0));
return ResultCode.Success;
}
[CommandHipc(4)]
// GetStandardLocalSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetStandardLocalSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(_timeManager.StandardLocalSystemClock,
(_permissions & TimePermissions.LocalSystemClockWritableMask) != 0,
(_permissions & TimePermissions.BypassUninitialized) != 0));
return ResultCode.Success;
}
[CommandHipc(5)] // 4.0.0+
// GetEphemeralNetworkSystemClock() -> object<nn::timesrv::detail::service::ISystemClock>
public ResultCode GetEphemeralNetworkSystemClock(ServiceCtx context)
{
MakeObject(context, new ISystemClock(_timeManager.StandardNetworkSystemClock,
(_permissions & TimePermissions.NetworkSystemClockWritableMask) != 0,
(_permissions & TimePermissions.BypassUninitialized) != 0));
return ResultCode.Success;
}
[CommandHipc(20)] // 6.0.0+
// GetSharedMemoryNativeHandle() -> handle<copy>
public ResultCode GetSharedMemoryNativeHandle(ServiceCtx context)
{
if (_timeSharedMemoryNativeHandle == 0)
{
if (context.Process.HandleTable.GenerateHandle(_timeManager.SharedMemory.GetSharedMemory(), out _timeSharedMemoryNativeHandle) != KernelResult.Success)
{
throw new InvalidOperationException("Out of handles!");
}
}
context.Response.HandleDesc = IpcHandleDesc.MakeCopy(_timeSharedMemoryNativeHandle);
return ResultCode.Success;
}
[CommandHipc(50)] // 4.0.0+
// SetStandardSteadyClockInternalOffset(nn::TimeSpanType internal_offset)
public ResultCode SetStandardSteadyClockInternalOffset(ServiceCtx context)
{
// This is only implemented in glue's StaticService.
return ResultCode.NotImplemented;
}
[CommandHipc(51)] // 9.0.0+
// GetStandardSteadyClockRtcValue() -> u64
public ResultCode GetStandardSteadyClockRtcValue(ServiceCtx context)
{
// This is only implemented in glue's StaticService.
return ResultCode.NotImplemented;
}
[CommandHipc(100)]
// IsStandardUserSystemClockAutomaticCorrectionEnabled() -> bool
public ResultCode IsStandardUserSystemClockAutomaticCorrectionEnabled(ServiceCtx context)
{
StandardUserSystemClockCore userClock = _timeManager.StandardUserSystemClock;
if (!userClock.IsInitialized())
{
return ResultCode.UninitializedClock;
}
context.ResponseData.Write(userClock.IsAutomaticCorrectionEnabled());
return ResultCode.Success;
}
[CommandHipc(101)]
// SetStandardUserSystemClockAutomaticCorrectionEnabled(b8)
public ResultCode SetStandardUserSystemClockAutomaticCorrectionEnabled(ServiceCtx context)
{
SteadyClockCore steadyClock = _timeManager.StandardSteadyClock;
StandardUserSystemClockCore userClock = _timeManager.StandardUserSystemClock;
if (!userClock.IsInitialized() || !steadyClock.IsInitialized())
{
return ResultCode.UninitializedClock;
}
if ((_permissions & TimePermissions.UserSystemClockWritableMask) == 0)
{
return ResultCode.PermissionDenied;
}
bool autoCorrectionEnabled = context.RequestData.ReadBoolean();
ResultCode result = userClock.SetAutomaticCorrectionEnabled(context.Thread, autoCorrectionEnabled);
if (result == ResultCode.Success)
{
_timeManager.SharedMemory.SetAutomaticCorrectionEnabled(autoCorrectionEnabled);
SteadyClockTimePoint currentTimePoint = userClock.GetSteadyClockCore().GetCurrentTimePoint(context.Thread);
userClock.SetAutomaticCorrectionUpdatedTime(currentTimePoint);
userClock.SignalAutomaticCorrectionEvent();
}
return result;
}
[CommandHipc(102)] // 5.0.0+
// GetStandardUserSystemClockInitialYear() -> u32
public ResultCode GetStandardUserSystemClockInitialYear(ServiceCtx context)
{
// This is only implemented in glue's StaticService.
return ResultCode.NotImplemented;
}
[CommandHipc(200)] // 3.0.0+
// IsStandardNetworkSystemClockAccuracySufficient() -> bool
public ResultCode IsStandardNetworkSystemClockAccuracySufficient(ServiceCtx context)
{
context.ResponseData.Write(_timeManager.StandardNetworkSystemClock.IsStandardNetworkSystemClockAccuracySufficient(context.Thread));
return ResultCode.Success;
}
[CommandHipc(201)] // 6.0.0+
// GetStandardUserSystemClockAutomaticCorrectionUpdatedTime() -> nn::time::SteadyClockTimePoint
public ResultCode GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(ServiceCtx context)
{
StandardUserSystemClockCore userClock = _timeManager.StandardUserSystemClock;
if (!userClock.IsInitialized())
{
return ResultCode.UninitializedClock;
}
context.ResponseData.WriteStruct(userClock.GetAutomaticCorrectionUpdatedTime());
return ResultCode.Success;
}
[CommandHipc(300)] // 4.0.0+
// CalculateMonotonicSystemClockBaseTimePoint(nn::time::SystemClockContext) -> s64
public ResultCode CalculateMonotonicSystemClockBaseTimePoint(ServiceCtx context)
{
SteadyClockCore steadyClock = _timeManager.StandardSteadyClock;
if (!steadyClock.IsInitialized())
{
return ResultCode.UninitializedClock;
}
SystemClockContext otherContext = context.RequestData.ReadStruct<SystemClockContext>();
SteadyClockTimePoint currentTimePoint = steadyClock.GetCurrentTimePoint(context.Thread);
ResultCode result = ResultCode.TimeMismatch;
if (currentTimePoint.ClockSourceId == otherContext.SteadyTimePoint.ClockSourceId)
{
Add a new JIT compiler for CPU code (#693) * Start of the ARMeilleure project * Refactoring around the old IRAdapter, now renamed to PreAllocator * Optimize the LowestBitSet method * Add CLZ support and fix CLS implementation * Add missing Equals and GetHashCode overrides on some structs, misc small tweaks * Implement the ByteSwap IR instruction, and some refactoring on the assembler * Implement the DivideUI IR instruction and fix 64-bits IDIV * Correct constant operand type on CSINC * Move division instructions implementation to InstEmitDiv * Fix destination type for the ConditionalSelect IR instruction * Implement UMULH and SMULH, with new IR instructions * Fix some issues with shift instructions * Fix constant types for BFM instructions * Fix up new tests using the new V128 struct * Update tests * Move DIV tests to a separate file * Add support for calls, and some instructions that depends on them * Start adding support for SIMD & FP types, along with some of the related ARM instructions * Fix some typos and the divide instruction with FP operands * Fix wrong method call on Clz_V * Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes * Implement SIMD logical instructions and more misc. fixes * Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations * Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes * Implement SIMD shift instruction and fix Dup_V * Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table * Fix check with tolerance on tester * Implement FP & SIMD comparison instructions, and some fixes * Update FCVT (Scalar) encoding on the table to support the Half-float variants * Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes * Use old memory access methods, made a start on SIMD memory insts support, some fixes * Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes * Fix arguments count with struct return values, other fixes * More instructions * Misc. fixes and integrate LDj3SNuD fixes * Update tests * Add a faster linear scan allocator, unwinding support on windows, and other changes * Update Ryujinx.HLE * Update Ryujinx.Graphics * Fix V128 return pointer passing, RCX is clobbered * Update Ryujinx.Tests * Update ITimeZoneService * Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks * Use generic GetFunctionPointerForDelegate method and other tweaks * Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics * Remove some unused code on the assembler * Fix REX.W prefix regression on float conversion instructions, add some sort of profiler * Add hardware capability detection * Fix regression on Sha1h and revert Fcm** changes * Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator * Fix silly mistake introduced on last commit on CpuId * Generate inline stack probes when the stack allocation is too large * Initial support for the System-V ABI * Support multiple destination operands * Fix SSE2 VectorInsert8 path, and other fixes * Change placement of XMM callee save and restore code to match other compilers * Rename Dest to Destination and Inst to Instruction * Fix a regression related to calls and the V128 type * Add an extra space on comments to match code style * Some refactoring * Fix vector insert FP32 SSE2 path * Port over the ARM32 instructions * Avoid memory protection races on JIT Cache * Another fix on VectorInsert FP32 (thanks to LDj3SNuD * Float operands don't need to use the same register when VEX is supported * Add a new register allocator, higher quality code for hot code (tier up), and other tweaks * Some nits, small improvements on the pre allocator * CpuThreadState is gone * Allow changing CPU emulators with a config entry * Add runtime identifiers on the ARMeilleure project * Allow switching between CPUs through a config entry (pt. 2) * Change win10-x64 to win-x64 on projects * Update the Ryujinx project to use ARMeilleure * Ensure that the selected register is valid on the hybrid allocator * Allow exiting on returns to 0 (should fix test regression) * Remove register assignments for most used variables on the hybrid allocator * Do not use fixed registers as spill temp * Add missing namespace and remove unneeded using * Address PR feedback * Fix types, etc * Enable AssumeStrictAbiCompliance by default * Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 18:56:22 +00:00
TimeSpanType ticksTimeSpan = TimeSpanType.FromTicks(context.Thread.Context.CntpctEl0, context.Thread.Context.CntfrqEl0);
long baseTimePoint = otherContext.Offset + currentTimePoint.TimePoint - ticksTimeSpan.ToSeconds();
context.ResponseData.Write(baseTimePoint);
result = ResultCode.Success;
}
return result;
}
[CommandHipc(400)] // 4.0.0+
// GetClockSnapshot(u8) -> buffer<nn::time::sf::ClockSnapshot, 0x1a>
public ResultCode GetClockSnapshot(ServiceCtx context)
{
byte type = context.RequestData.ReadByte();
context.Response.PtrBuff[0] = context.Response.PtrBuff[0].WithSize((uint)Marshal.SizeOf<ClockSnapshot>());
ResultCode result = _timeManager.StandardUserSystemClock.GetClockContext(context.Thread, out SystemClockContext userContext);
if (result == ResultCode.Success)
{
result = _timeManager.StandardNetworkSystemClock.GetClockContext(context.Thread, out SystemClockContext networkContext);
if (result == ResultCode.Success)
{
result = GetClockSnapshotFromSystemClockContextInternal(context.Thread, userContext, networkContext, type, out ClockSnapshot clockSnapshot);
if (result == ResultCode.Success)
{
WriteClockSnapshotFromBuffer(context, context.Request.RecvListBuff[0], clockSnapshot);
}
}
}
return result;
}
[CommandHipc(401)] // 4.0.0+
// GetClockSnapshotFromSystemClockContext(u8, nn::time::SystemClockContext, nn::time::SystemClockContext) -> buffer<nn::time::sf::ClockSnapshot, 0x1a>
public ResultCode GetClockSnapshotFromSystemClockContext(ServiceCtx context)
{
byte type = context.RequestData.ReadByte();
context.Response.PtrBuff[0] = context.Response.PtrBuff[0].WithSize((uint)Marshal.SizeOf<ClockSnapshot>());
context.RequestData.BaseStream.Position += 7;
SystemClockContext userContext = context.RequestData.ReadStruct<SystemClockContext>();
SystemClockContext networkContext = context.RequestData.ReadStruct<SystemClockContext>();
ResultCode result = GetClockSnapshotFromSystemClockContextInternal(context.Thread, userContext, networkContext, type, out ClockSnapshot clockSnapshot);
if (result == ResultCode.Success)
{
WriteClockSnapshotFromBuffer(context, context.Request.RecvListBuff[0], clockSnapshot);
}
return result;
}
[CommandHipc(500)] // 4.0.0+
// CalculateStandardUserSystemClockDifferenceByUser(buffer<nn::time::sf::ClockSnapshot, 0x19>, buffer<nn::time::sf::ClockSnapshot, 0x19>) -> nn::TimeSpanType
public ResultCode CalculateStandardUserSystemClockDifferenceByUser(ServiceCtx context)
{
ClockSnapshot clockSnapshotA = ReadClockSnapshotFromBuffer(context, context.Request.PtrBuff[0]);
ClockSnapshot clockSnapshotB = ReadClockSnapshotFromBuffer(context, context.Request.PtrBuff[1]);
TimeSpanType difference = TimeSpanType.FromSeconds(clockSnapshotB.UserContext.Offset - clockSnapshotA.UserContext.Offset);
if (clockSnapshotB.UserContext.SteadyTimePoint.ClockSourceId != clockSnapshotA.UserContext.SteadyTimePoint.ClockSourceId || (clockSnapshotB.IsAutomaticCorrectionEnabled && clockSnapshotA.IsAutomaticCorrectionEnabled))
{
difference = new TimeSpanType(0);
}
context.ResponseData.Write(difference.NanoSeconds);
return ResultCode.Success;
}
[CommandHipc(501)] // 4.0.0+
// CalculateSpanBetween(buffer<nn::time::sf::ClockSnapshot, 0x19>, buffer<nn::time::sf::ClockSnapshot, 0x19>) -> nn::TimeSpanType
public ResultCode CalculateSpanBetween(ServiceCtx context)
{
ClockSnapshot clockSnapshotA = ReadClockSnapshotFromBuffer(context, context.Request.PtrBuff[0]);
ClockSnapshot clockSnapshotB = ReadClockSnapshotFromBuffer(context, context.Request.PtrBuff[1]);
TimeSpanType result;
ResultCode resultCode = clockSnapshotA.SteadyClockTimePoint.GetSpanBetween(clockSnapshotB.SteadyClockTimePoint, out long timeSpan);
if (resultCode != ResultCode.Success)
{
resultCode = ResultCode.TimeNotFound;
if (clockSnapshotA.NetworkTime != 0 && clockSnapshotB.NetworkTime != 0)
{
result = TimeSpanType.FromSeconds(clockSnapshotB.NetworkTime - clockSnapshotA.NetworkTime);
resultCode = ResultCode.Success;
}
else
{
return resultCode;
}
}
else
{
result = TimeSpanType.FromSeconds(timeSpan);
}
context.ResponseData.Write(result.NanoSeconds);
return resultCode;
}
private ResultCode GetClockSnapshotFromSystemClockContextInternal(KThread thread, SystemClockContext userContext, SystemClockContext networkContext, byte type, out ClockSnapshot clockSnapshot)
{
clockSnapshot = new ClockSnapshot();
SteadyClockCore steadyClockCore = _timeManager.StandardSteadyClock;
SteadyClockTimePoint currentTimePoint = steadyClockCore.GetCurrentTimePoint(thread);
clockSnapshot.IsAutomaticCorrectionEnabled = _timeManager.StandardUserSystemClock.IsAutomaticCorrectionEnabled();
clockSnapshot.UserContext = userContext;
clockSnapshot.NetworkContext = networkContext;
clockSnapshot.SteadyClockTimePoint = currentTimePoint;
ResultCode result = _timeManager.TimeZone.Manager.GetDeviceLocationName(out string deviceLocationName);
if (result != ResultCode.Success)
{
return result;
}
char[] tzName = deviceLocationName.ToCharArray();
char[] locationName = new char[0x24];
Array.Copy(tzName, locationName, tzName.Length);
clockSnapshot.LocationName = locationName;
result = ClockSnapshot.GetCurrentTime(out clockSnapshot.UserTime, currentTimePoint, clockSnapshot.UserContext);
if (result == ResultCode.Success)
{
result = _timeManager.TimeZone.Manager.ToCalendarTimeWithMyRules(clockSnapshot.UserTime, out CalendarInfo userCalendarInfo);
if (result == ResultCode.Success)
{
clockSnapshot.UserCalendarTime = userCalendarInfo.Time;
clockSnapshot.UserCalendarAdditionalTime = userCalendarInfo.AdditionalInfo;
if (ClockSnapshot.GetCurrentTime(out clockSnapshot.NetworkTime, currentTimePoint, clockSnapshot.NetworkContext) != ResultCode.Success)
{
clockSnapshot.NetworkTime = 0;
}
result = _timeManager.TimeZone.Manager.ToCalendarTimeWithMyRules(clockSnapshot.NetworkTime, out CalendarInfo networkCalendarInfo);
if (result == ResultCode.Success)
{
clockSnapshot.NetworkCalendarTime = networkCalendarInfo.Time;
clockSnapshot.NetworkCalendarAdditionalTime = networkCalendarInfo.AdditionalInfo;
clockSnapshot.Type = type;
// Probably a version field?
clockSnapshot.Unknown = 0;
}
}
}
return result;
}
private ClockSnapshot ReadClockSnapshotFromBuffer(ServiceCtx context, IpcPtrBuffDesc ipcDesc)
{
Debug.Assert(ipcDesc.Size == (ulong)Marshal.SizeOf<ClockSnapshot>());
byte[] temp = new byte[ipcDesc.Size];
context.Memory.Read(ipcDesc.Position, temp);
using (BinaryReader bufferReader = new BinaryReader(new MemoryStream(temp)))
{
return bufferReader.ReadStruct<ClockSnapshot>();
}
}
private void WriteClockSnapshotFromBuffer(ServiceCtx context, IpcRecvListBuffDesc ipcDesc, ClockSnapshot clockSnapshot)
{
MemoryHelper.Write(context.Memory, ipcDesc.Position, clockSnapshot);
}
}
}