0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-10 21:01:58 +00:00

Revert "Calculate vertex buffer sizes from index buffer (#1663)" (#2544)

This reverts commit 10d649e6d3.
This commit is contained in:
gdkchan 2021-08-11 22:13:48 -03:00 committed by GitHub
parent 0ba4ade8f1
commit 8196086f7a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 5 additions and 352 deletions

View file

@ -1,307 +0,0 @@
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Memory;
using System;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
namespace Ryujinx.Graphics.Gpu.Engine.Threed
{
/// <summary>
/// Index buffer utility methods.
/// </summary>
static class IbUtils
{
/// <summary>
/// Minimum size that the vertex buffer must have, in bytes, to make the index counting profitable.
/// </summary>
private const ulong MinimumVbSizeThreshold = 0x200000; // 2 MB
/// <summary>
/// Maximum number of indices that the index buffer may have to make the index counting profitable.
/// </summary>
private const int MaximumIndexCountThreshold = 65536;
/// <summary>
/// Checks if getting the vertex buffer size from the maximum index buffer index is worth it.
/// </summary>
/// <param name="vbSizeMax">Maximum size that the vertex buffer may possibly have, in bytes</param>
/// <param name="indexCount">Total number of indices on the index buffer</param>
/// <returns>True if getting the vertex buffer size from the index buffer may yield performance improvements</returns>
public static bool IsIbCountingProfitable(ulong vbSizeMax, int indexCount)
{
return vbSizeMax >= MinimumVbSizeThreshold && indexCount <= MaximumIndexCountThreshold;
}
/// <summary>
/// Gets the vertex count of the vertex buffer accessed with the indices from the current index buffer.
/// </summary>
/// <param name="mm">GPU memory manager</param>
/// <param name="type">Index buffer element integer type</param>
/// <param name="gpuVa">GPU virtual address of the index buffer</param>
/// <param name="firstIndex">Index of the first index buffer element used on the draw</param>
/// <param name="indexCount">Number of index buffer elements used on the draw</param>
/// <returns>Vertex count</returns>
public static ulong GetVertexCount(MemoryManager mm, IndexType type, ulong gpuVa, int firstIndex, int indexCount)
{
return type switch
{
IndexType.UShort => CountU16(mm, gpuVa, firstIndex, indexCount),
IndexType.UInt => CountU32(mm, gpuVa, firstIndex, indexCount),
_ => CountU8(mm, gpuVa, firstIndex, indexCount)
};
}
/// <summary>
/// Gets the vertex count of the vertex buffer accessed with the indices from the current index buffer, with 8-bit indices.
/// </summary>
/// <param name="mm">GPU memory manager</param>
/// <param name="gpuVa">GPU virtual address of the index buffer</param>
/// <param name="firstIndex">Index of the first index buffer element used on the draw</param>
/// <param name="indexCount">Number of index buffer elements used on the draw</param>
/// <returns>Vertex count</returns>
private unsafe static ulong CountU8(MemoryManager mm, ulong gpuVa, int firstIndex, int indexCount)
{
uint max = 0;
ReadOnlySpan<byte> data = mm.GetSpan(gpuVa, firstIndex + indexCount);
if (Avx2.IsSupported)
{
fixed (byte* pInput = data)
{
int endAligned = firstIndex + ((data.Length - firstIndex) & ~127);
var result = Vector256<byte>.Zero;
for (int i = firstIndex; i < endAligned; i += 128)
{
var dataVec0 = Avx.LoadVector256(pInput + (nuint)(uint)i);
var dataVec1 = Avx.LoadVector256(pInput + (nuint)(uint)i + 32);
var dataVec2 = Avx.LoadVector256(pInput + (nuint)(uint)i + 64);
var dataVec3 = Avx.LoadVector256(pInput + (nuint)(uint)i + 96);
var max01 = Avx2.Max(dataVec0, dataVec1);
var max23 = Avx2.Max(dataVec2, dataVec3);
var max0123 = Avx2.Max(max01, max23);
result = Avx2.Max(result, max0123);
}
result = Avx2.Max(result, Avx2.Shuffle(result.AsInt32(), 0xee).AsByte());
result = Avx2.Max(result, Avx2.Shuffle(result.AsInt32(), 0x55).AsByte());
result = Avx2.Max(result, Avx2.ShuffleLow(result.AsUInt16(), 0x55).AsByte());
result = Avx2.Max(result, Avx2.ShiftRightLogical(result.AsUInt16(), 8).AsByte());
max = Math.Max(result.GetElement(0), result.GetElement(16));
firstIndex = endAligned;
}
}
else if (Sse2.IsSupported)
{
fixed (byte* pInput = data)
{
int endAligned = firstIndex + ((data.Length - firstIndex) & ~63);
var result = Vector128<byte>.Zero;
for (int i = firstIndex; i < endAligned; i += 64)
{
var dataVec0 = Sse2.LoadVector128(pInput + (nuint)(uint)i);
var dataVec1 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 16);
var dataVec2 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 32);
var dataVec3 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 48);
var max01 = Sse2.Max(dataVec0, dataVec1);
var max23 = Sse2.Max(dataVec2, dataVec3);
var max0123 = Sse2.Max(max01, max23);
result = Sse2.Max(result, max0123);
}
result = Sse2.Max(result, Sse2.Shuffle(result.AsInt32(), 0xee).AsByte());
result = Sse2.Max(result, Sse2.Shuffle(result.AsInt32(), 0x55).AsByte());
result = Sse2.Max(result, Sse2.ShuffleLow(result.AsUInt16(), 0x55).AsByte());
result = Sse2.Max(result, Sse2.ShiftRightLogical(result.AsUInt16(), 8).AsByte());
max = result.GetElement(0);
firstIndex = endAligned;
}
}
for (int i = firstIndex; i < data.Length; i++)
{
if (max < data[i]) max = data[i];
}
return (ulong)max + 1;
}
/// <summary>
/// Gets the vertex count of the vertex buffer accessed with the indices from the current index buffer, with 16-bit indices.
/// </summary>
/// <param name="mm">GPU memory manager</param>
/// <param name="gpuVa">GPU virtual address of the index buffer</param>
/// <param name="firstIndex">Index of the first index buffer element used on the draw</param>
/// <param name="indexCount">Number of index buffer elements used on the draw</param>
/// <returns>Vertex count</returns>
private unsafe static ulong CountU16(MemoryManager mm, ulong gpuVa, int firstIndex, int indexCount)
{
uint max = 0;
ReadOnlySpan<ushort> data = MemoryMarshal.Cast<byte, ushort>(mm.GetSpan(gpuVa, (firstIndex + indexCount) * 2));
if (Avx2.IsSupported)
{
fixed (ushort* pInput = data)
{
int endAligned = firstIndex + ((data.Length - firstIndex) & ~63);
var result = Vector256<ushort>.Zero;
for (int i = firstIndex; i < endAligned; i += 64)
{
var dataVec0 = Avx.LoadVector256(pInput + (nuint)(uint)i);
var dataVec1 = Avx.LoadVector256(pInput + (nuint)(uint)i + 16);
var dataVec2 = Avx.LoadVector256(pInput + (nuint)(uint)i + 32);
var dataVec3 = Avx.LoadVector256(pInput + (nuint)(uint)i + 48);
var max01 = Avx2.Max(dataVec0, dataVec1);
var max23 = Avx2.Max(dataVec2, dataVec3);
var max0123 = Avx2.Max(max01, max23);
result = Avx2.Max(result, max0123);
}
result = Avx2.Max(result, Avx2.Shuffle(result.AsInt32(), 0xee).AsUInt16());
result = Avx2.Max(result, Avx2.Shuffle(result.AsInt32(), 0x55).AsUInt16());
result = Avx2.Max(result, Avx2.ShuffleLow(result, 0x55));
max = Math.Max(result.GetElement(0), result.GetElement(8));
firstIndex = endAligned;
}
}
else if (Sse41.IsSupported)
{
fixed (ushort* pInput = data)
{
int endAligned = firstIndex + ((data.Length - firstIndex) & ~31);
var result = Vector128<ushort>.Zero;
for (int i = firstIndex; i < endAligned; i += 32)
{
var dataVec0 = Sse2.LoadVector128(pInput + (nuint)(uint)i);
var dataVec1 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 8);
var dataVec2 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 16);
var dataVec3 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 24);
var max01 = Sse41.Max(dataVec0, dataVec1);
var max23 = Sse41.Max(dataVec2, dataVec3);
var max0123 = Sse41.Max(max01, max23);
result = Sse41.Max(result, max0123);
}
result = Sse41.Max(result, Sse2.Shuffle(result.AsInt32(), 0xee).AsUInt16());
result = Sse41.Max(result, Sse2.Shuffle(result.AsInt32(), 0x55).AsUInt16());
result = Sse41.Max(result, Sse2.ShuffleLow(result, 0x55));
max = result.GetElement(0);
firstIndex = endAligned;
}
}
for (int i = firstIndex; i < data.Length; i++)
{
if (max < data[i]) max = data[i];
}
return (ulong)max + 1;
}
/// <summary>
/// Gets the vertex count of the vertex buffer accessed with the indices from the current index buffer, with 32-bit indices.
/// </summary>
/// <param name="mm">GPU memory manager</param>
/// <param name="gpuVa">GPU virtual address of the index buffer</param>
/// <param name="firstIndex">Index of the first index buffer element used on the draw</param>
/// <param name="indexCount">Number of index buffer elements used on the draw</param>
/// <returns>Vertex count</returns>
private unsafe static ulong CountU32(MemoryManager mm, ulong gpuVa, int firstIndex, int indexCount)
{
uint max = 0;
ReadOnlySpan<uint> data = MemoryMarshal.Cast<byte, uint>(mm.GetSpan(gpuVa, (firstIndex + indexCount) * 4));
if (Avx2.IsSupported)
{
fixed (uint* pInput = data)
{
int endAligned = firstIndex + ((data.Length - firstIndex) & ~31);
var result = Vector256<uint>.Zero;
for (int i = firstIndex; i < endAligned; i += 32)
{
var dataVec0 = Avx.LoadVector256(pInput + (nuint)(uint)i);
var dataVec1 = Avx.LoadVector256(pInput + (nuint)(uint)i + 8);
var dataVec2 = Avx.LoadVector256(pInput + (nuint)(uint)i + 16);
var dataVec3 = Avx.LoadVector256(pInput + (nuint)(uint)i + 24);
var max01 = Avx2.Max(dataVec0, dataVec1);
var max23 = Avx2.Max(dataVec2, dataVec3);
var max0123 = Avx2.Max(max01, max23);
result = Avx2.Max(result, max0123);
}
result = Avx2.Max(result, Avx2.Shuffle(result, 0xee));
result = Avx2.Max(result, Avx2.Shuffle(result, 0x55));
max = Math.Max(result.GetElement(0), result.GetElement(4));
firstIndex = endAligned;
}
}
else if (Sse41.IsSupported)
{
fixed (uint* pInput = data)
{
int endAligned = firstIndex + ((data.Length - firstIndex) & ~15);
var result = Vector128<uint>.Zero;
for (int i = firstIndex; i < endAligned; i += 16)
{
var dataVec0 = Sse2.LoadVector128(pInput + (nuint)(uint)i);
var dataVec1 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 4);
var dataVec2 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 8);
var dataVec3 = Sse2.LoadVector128(pInput + (nuint)(uint)i + 12);
var max01 = Sse41.Max(dataVec0, dataVec1);
var max23 = Sse41.Max(dataVec2, dataVec3);
var max0123 = Sse41.Max(max01, max23);
result = Sse41.Max(result, max0123);
}
result = Sse41.Max(result, Sse2.Shuffle(result, 0xee));
result = Sse41.Max(result, Sse2.Shuffle(result, 0x55));
max = result.GetElement(0);
firstIndex = endAligned;
}
}
for (int i = firstIndex; i < data.Length; i++)
{
if (max < data[i]) max = data[i];
}
return (ulong)max + 1;
}
}
}

View file

@ -34,8 +34,6 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed
private byte _vsClipDistancesWritten; private byte _vsClipDistancesWritten;
private bool _prevDrawIndexed; private bool _prevDrawIndexed;
private int _prevFirstIndex;
private int _prevIndexCount;
private bool _prevTfEnable; private bool _prevTfEnable;
/// <summary> /// <summary>
@ -184,25 +182,10 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed
// method when doing indexed draws, so we need to make sure // method when doing indexed draws, so we need to make sure
// to update the vertex buffers if we are doing a regular // to update the vertex buffers if we are doing a regular
// draw after a indexed one and vice-versa. // draw after a indexed one and vice-versa.
if (GraphicsConfig.EnableIndexedVbSizeDetection) if (_drawState.DrawIndexed != _prevDrawIndexed)
{ {
if (_drawState.DrawIndexed != _prevDrawIndexed || _updateTracker.ForceDirty(VertexBufferStateIndex);
_drawState.FirstIndex != _prevFirstIndex || _prevDrawIndexed = _drawState.DrawIndexed;
_drawState.IndexCount != _prevIndexCount)
{
_updateTracker.ForceDirty(VertexBufferStateIndex);
_prevDrawIndexed = _drawState.DrawIndexed;
_prevFirstIndex = _drawState.FirstIndex;
_prevIndexCount = _drawState.IndexCount;
}
}
else
{
if (_drawState.DrawIndexed != _prevDrawIndexed)
{
_updateTracker.ForceDirty(VertexBufferStateIndex);
_prevDrawIndexed = _drawState.DrawIndexed;
}
} }
bool tfEnable = _state.State.TfEnable; bool tfEnable = _state.State.TfEnable;
@ -804,25 +787,7 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed
{ {
// This size may be (much) larger than the real vertex buffer size. // This size may be (much) larger than the real vertex buffer size.
// Avoid calculating it this way, unless we don't have any other option. // Avoid calculating it this way, unless we don't have any other option.
ulong vbSizeMax = endAddress.Pack() - address + 1; size = endAddress.Pack() - address + 1;
int firstIndex = _drawState.FirstIndex;
int indexCount = _drawState.IndexCount;
bool ibCountingProfitable = GraphicsConfig.EnableIndexedVbSizeDetection && IbUtils.IsIbCountingProfitable(vbSizeMax, indexCount);
if (ibCountingProfitable && !_drawState.IbStreamer.HasInlineIndexData && _drawState.DrawIndexed && stride != 0)
{
IndexType ibType = _state.State.IndexBufferState.Type;
ulong ibGpuVa = _state.State.IndexBufferState.Address.Pack();
ulong vertexCount = IbUtils.GetVertexCount(_channel.MemoryManager, ibType, ibGpuVa, firstIndex, indexCount);
size = Math.Min(vertexCount * (ulong)stride, vbSizeMax);
}
else
{
size = vbSizeMax;
}
} }
else else
{ {

View file

@ -33,11 +33,6 @@ namespace Ryujinx.Graphics.Gpu
/// </summary> /// </summary>
public static bool EnableMacroJit = true; public static bool EnableMacroJit = true;
/// <summary>
/// Enables or disables vertex buffer size detection from the index buffer, for indexed draws.
/// </summary>
public static bool EnableIndexedVbSizeDetection = true;
/// <summary> /// <summary>
/// Title id of the current running game. /// Title id of the current running game.
/// Used by the shader cache. /// Used by the shader cache.