using ARMeilleure.Decoders;
using ARMeilleure.Diagnostics;
using ARMeilleure.Instructions;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Memory;
using ARMeilleure.State;
using System;
using System.Collections.Concurrent;
using System.Threading;

using static ARMeilleure.IntermediateRepresentation.OperandHelper;
using static ARMeilleure.IntermediateRepresentation.OperationHelper;

namespace ARMeilleure.Translation
{
    using PTC;

    public class Translator
    {
        private const ulong CallFlag = InstEmitFlowHelper.CallFlag;

        private readonly IMemoryManager _memory;

        private readonly ConcurrentDictionary<ulong, TranslatedFunction> _funcs;

        private readonly ConcurrentStack<RejitRequest> _backgroundStack;

        private readonly AutoResetEvent _backgroundTranslatorEvent;

        private readonly JumpTable _jumpTable;

        private volatile int _threadCount;

        // FIXME: Remove this once the init logic of the emulator will be redone
        public static ManualResetEvent IsReadyForTranslation = new ManualResetEvent(false);

        public Translator(IJitMemoryAllocator allocator, IMemoryManager memory)
        {
            _memory = memory;

            _funcs = new ConcurrentDictionary<ulong, TranslatedFunction>();

            _backgroundStack = new ConcurrentStack<RejitRequest>();

            _backgroundTranslatorEvent = new AutoResetEvent(false);

            _jumpTable = new JumpTable(allocator);

            JitCache.Initialize(allocator);

            DirectCallStubs.InitializeStubs();

            if (Ptc.State == PtcState.Enabled)
            {
                Ptc.LoadTranslations(_funcs, memory.PageTablePointer, _jumpTable);
            }
        }

        private void TranslateStackedSubs()
        {
            while (_threadCount != 0)
            {
                if (_backgroundStack.TryPop(out RejitRequest request))
                {
                    TranslatedFunction func = Translate(_memory, _jumpTable, request.Address, request.Mode, highCq: true);

                    _funcs.AddOrUpdate(request.Address, func, (key, oldFunc) => func);

                    _jumpTable.RegisterFunction(request.Address, func);

                    if (PtcProfiler.Enabled)
                    {
                        PtcProfiler.UpdateEntry(request.Address, request.Mode, highCq: true);
                    }
                }
                else
                {
                    _backgroundTranslatorEvent.WaitOne();
                }
            }

            _backgroundTranslatorEvent.Set(); // Wake up any other background translator threads, to encourage them to exit.
        }

        public void Execute(State.ExecutionContext context, ulong address)
        {
            if (Interlocked.Increment(ref _threadCount) == 1)
            {
                IsReadyForTranslation.WaitOne();

                if (Ptc.State == PtcState.Enabled)
                {
                    Ptc.MakeAndSaveTranslations(_funcs, _memory, _jumpTable);
                }

                PtcProfiler.Start();

                Ptc.Disable();

                // Simple heuristic, should be user configurable in future. (1 for 4 core/ht or less, 2 for 6 core+ht etc).
                // All threads are normal priority except from the last, which just fills as much of the last core as the os lets it with a low priority.
                // If we only have one rejit thread, it should be normal priority as highCq code is performance critical.
                // TODO: Use physical cores rather than logical. This only really makes sense for processors with hyperthreading. Requires OS specific code.
                int unboundedThreadCount = Math.Max(1, (Environment.ProcessorCount - 6) / 3);
                int threadCount          = Math.Min(4, unboundedThreadCount);

                for (int i = 0; i < threadCount; i++)
                {
                    bool last = i != 0 && i == unboundedThreadCount - 1;

                    Thread backgroundTranslatorThread = new Thread(TranslateStackedSubs)
                    {
                        Name = "CPU.BackgroundTranslatorThread." + i,
                        Priority = last ? ThreadPriority.Lowest : ThreadPriority.Normal
                    };

                    backgroundTranslatorThread.Start();
                }
            }

            Statistics.InitializeTimer();

            NativeInterface.RegisterThread(context, _memory, this);

            do
            {
                address = ExecuteSingle(context, address);
            }
            while (context.Running && (address & ~1UL) != 0);

            NativeInterface.UnregisterThread();

            if (Interlocked.Decrement(ref _threadCount) == 0)
            {
                _backgroundTranslatorEvent.Set();
            }
        }

        public ulong ExecuteSingle(State.ExecutionContext context, ulong address)
        {
            TranslatedFunction func = GetOrTranslate(address, context.ExecutionMode);

            Statistics.StartTimer();

            ulong nextAddr = func.Execute(context);

            Statistics.StopTimer(address);

            return nextAddr;
        }

        internal TranslatedFunction GetOrTranslate(ulong address, ExecutionMode mode)
        {
            // TODO: Investigate how we should handle code at unaligned addresses.
            // Currently, those low bits are used to store special flags.
            bool isCallTarget = (address & CallFlag) != 0;

            address &= ~CallFlag;

            if (!_funcs.TryGetValue(address, out TranslatedFunction func))
            {
                func = Translate(_memory, _jumpTable, address, mode, highCq: false);

                _funcs.TryAdd(address, func);

                if (PtcProfiler.Enabled)
                {
                    PtcProfiler.AddEntry(address, mode, highCq: false);
                }
            }

            if (isCallTarget && func.ShouldRejit())
            {
                _backgroundStack.Push(new RejitRequest(address, mode));

                _backgroundTranslatorEvent.Set();
            }

            return func;
        }

        internal static TranslatedFunction Translate(IMemoryManager memory, JumpTable jumpTable, ulong address, ExecutionMode mode, bool highCq)
        {
            ArmEmitterContext context = new ArmEmitterContext(memory, jumpTable, (long)address, highCq, Aarch32Mode.User);

            PrepareOperandPool(highCq);
            PrepareOperationPool(highCq);

            Logger.StartPass(PassName.Decoding);

            Block[] blocks = Decoder.Decode(memory, address, mode, highCq, singleBlock: false);

            Logger.EndPass(PassName.Decoding);

            Logger.StartPass(PassName.Translation);

            EmitSynchronization(context);

            if (blocks[0].Address != address)
            {
                context.Branch(context.GetLabel(address));
            }

            ControlFlowGraph cfg = EmitAndGetCFG(context, blocks);

            Logger.EndPass(PassName.Translation);

            Logger.StartPass(PassName.RegisterUsage);

            RegisterUsage.RunPass(cfg, mode);

            Logger.EndPass(PassName.RegisterUsage);

            OperandType[] argTypes = new OperandType[] { OperandType.I64 };

            CompilerOptions options = highCq ? CompilerOptions.HighCq : CompilerOptions.None;

            GuestFunction func;

            if (Ptc.State == PtcState.Disabled)
            {
                func = Compiler.Compile<GuestFunction>(cfg, argTypes, OperandType.I64, options);
            }
            else
            {
                using (PtcInfo ptcInfo = new PtcInfo())
                {
                    func = Compiler.Compile<GuestFunction>(cfg, argTypes, OperandType.I64, options, ptcInfo);

                    Ptc.WriteInfoCodeReloc((long)address, highCq, ptcInfo);
                }
            }

            ResetOperandPool(highCq);
            ResetOperationPool(highCq);

            return new TranslatedFunction(func, highCq);
        }

        private static ControlFlowGraph EmitAndGetCFG(ArmEmitterContext context, Block[] blocks)
        {
            for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
            {
                Block block = blocks[blkIndex];

                context.CurrBlock = block;

                context.MarkLabel(context.GetLabel(block.Address));

                if (block.Exit)
                {
                    InstEmitFlowHelper.EmitTailContinue(context, Const(block.Address), block.TailCall);
                }
                else
                {
                    for (int opcIndex = 0; opcIndex < block.OpCodes.Count; opcIndex++)
                    {
                        OpCode opCode = block.OpCodes[opcIndex];

                        context.CurrOp = opCode;

                        bool isLastOp = opcIndex == block.OpCodes.Count - 1;

                        if (isLastOp && block.Branch != null && !block.Branch.Exit && block.Branch.Address <= block.Address)
                        {
                            EmitSynchronization(context);
                        }

                        Operand lblPredicateSkip = null;

                        if (opCode is OpCode32 op && op.Cond < Condition.Al)
                        {
                            lblPredicateSkip = Label();

                            InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, op.Cond.Invert());
                        }

                        if (opCode.Instruction.Emitter != null)
                        {
                            opCode.Instruction.Emitter(context);
                        }
                        else
                        {
                            throw new InvalidOperationException($"Invalid instruction \"{opCode.Instruction.Name}\".");
                        }

                        if (lblPredicateSkip != null)
                        {
                            context.MarkLabel(lblPredicateSkip);
                        }
                    }
                }
            }

            return context.GetControlFlowGraph();
        }

        internal static void EmitSynchronization(EmitterContext context)
        {
            long countOffs = NativeContext.GetCounterOffset();

            Operand countAddr = context.Add(context.LoadArgument(OperandType.I64, 0), Const(countOffs));

            Operand count = context.Load(OperandType.I32, countAddr);

            Operand lblNonZero = Label();
            Operand lblExit    = Label();

            context.BranchIfTrue(lblNonZero, count, BasicBlockFrequency.Cold);

            Operand running = context.Call(typeof(NativeInterface).GetMethod(nameof(NativeInterface.CheckSynchronization)));

            context.BranchIfTrue(lblExit, running, BasicBlockFrequency.Cold);

            context.Return(Const(0L));

            context.MarkLabel(lblNonZero);

            count = context.Subtract(count, Const(1));

            context.Store(countAddr, count);

            context.MarkLabel(lblExit);
        }
    }
}