using Ryujinx.Common.Logging; using Ryujinx.Graphics.Gpu.Memory; using Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostAsGpu.Types; using Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostChannel; using Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvMap; using Ryujinx.Memory; using System; using System.Diagnostics; using System.Runtime.CompilerServices; namespace Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostAsGpu { class NvHostAsGpuDeviceFile : NvDeviceFile { private const uint SmallPageSize = 0x1000; private const uint BigPageSize = 0x10000; private static readonly uint[] _pageSizes = new uint[] { SmallPageSize, BigPageSize }; private const ulong SmallRegionLimit = 0x400000000UL; // 16 GiB private const ulong DefaultUserSize = 1UL << 37; private readonly struct VmRegion { public ulong Start { get; } public ulong Limit { get; } public VmRegion(ulong start, ulong limit) { Start = start; Limit = limit; } } private static readonly VmRegion[] _vmRegions = new VmRegion[] { new VmRegion((ulong)BigPageSize << 16, SmallRegionLimit), new VmRegion(SmallRegionLimit, DefaultUserSize) }; private readonly AddressSpaceContext _asContext; private readonly NvMemoryAllocator _memoryAllocator; public NvHostAsGpuDeviceFile(ServiceCtx context, IVirtualMemoryManager memory, ulong owner) : base(context, owner) { _asContext = new AddressSpaceContext(context.Device.Gpu.CreateMemoryManager(owner)); _memoryAllocator = new NvMemoryAllocator(); } public override NvInternalResult Ioctl(NvIoctl command, Span<byte> arguments) { NvInternalResult result = NvInternalResult.NotImplemented; if (command.Type == NvIoctl.NvGpuAsMagic) { switch (command.Number) { case 0x01: result = CallIoctlMethod<BindChannelArguments>(BindChannel, arguments); break; case 0x02: result = CallIoctlMethod<AllocSpaceArguments>(AllocSpace, arguments); break; case 0x03: result = CallIoctlMethod<FreeSpaceArguments>(FreeSpace, arguments); break; case 0x05: result = CallIoctlMethod<UnmapBufferArguments>(UnmapBuffer, arguments); break; case 0x06: result = CallIoctlMethod<MapBufferExArguments>(MapBufferEx, arguments); break; case 0x08: result = CallIoctlMethod<GetVaRegionsArguments>(GetVaRegions, arguments); break; case 0x09: result = CallIoctlMethod<InitializeExArguments>(InitializeEx, arguments); break; case 0x14: result = CallIoctlMethod<RemapArguments>(Remap, arguments); break; } } return result; } public override NvInternalResult Ioctl3(NvIoctl command, Span<byte> arguments, Span<byte> inlineOutBuffer) { NvInternalResult result = NvInternalResult.NotImplemented; if (command.Type == NvIoctl.NvGpuAsMagic) { switch (command.Number) { case 0x08: // This is the same as the one in ioctl as inlineOutBuffer is empty. result = CallIoctlMethod<GetVaRegionsArguments>(GetVaRegions, arguments); break; } } return result; } private NvInternalResult BindChannel(ref BindChannelArguments arguments) { var channelDeviceFile = INvDrvServices.DeviceFileIdRegistry.GetData<NvHostChannelDeviceFile>(arguments.Fd); if (channelDeviceFile == null) { // TODO: Return invalid Fd error. } channelDeviceFile.Channel.BindMemory(_asContext.Gmm); return NvInternalResult.Success; } private NvInternalResult AllocSpace(ref AllocSpaceArguments arguments) { ulong size = (ulong)arguments.Pages * (ulong)arguments.PageSize; NvInternalResult result = NvInternalResult.Success; lock (_asContext) { // Note: When the fixed offset flag is not set, // the Offset field holds the alignment size instead. if ((arguments.Flags & AddressSpaceFlags.FixedOffset) != 0) { bool regionInUse = _memoryAllocator.IsRegionInUse(arguments.Offset, size, out ulong freeAddressStartPosition); ulong address; if (!regionInUse) { _memoryAllocator.AllocateRange(arguments.Offset, size, freeAddressStartPosition); address = freeAddressStartPosition; } else { address = NvMemoryAllocator.PteUnmapped; } arguments.Offset = address; } else { ulong address = _memoryAllocator.GetFreeAddress(size, out ulong freeAddressStartPosition, arguments.Offset); if (address != NvMemoryAllocator.PteUnmapped) { _memoryAllocator.AllocateRange(address, size, freeAddressStartPosition); } arguments.Offset = address; } if (arguments.Offset == NvMemoryAllocator.PteUnmapped) { arguments.Offset = 0; Logger.Warning?.Print(LogClass.ServiceNv, $"Failed to allocate size {size:x16}!"); result = NvInternalResult.OutOfMemory; } else { _asContext.AddReservation(arguments.Offset, size); } } return result; } private NvInternalResult FreeSpace(ref FreeSpaceArguments arguments) { ulong size = (ulong)arguments.Pages * (ulong)arguments.PageSize; NvInternalResult result = NvInternalResult.Success; lock (_asContext) { if (_asContext.RemoveReservation(arguments.Offset)) { _memoryAllocator.DeallocateRange(arguments.Offset, size); _asContext.Gmm.Unmap(arguments.Offset, size); } else { Logger.Warning?.Print(LogClass.ServiceNv, $"Failed to free offset 0x{arguments.Offset:x16} size 0x{size:x16}!"); result = NvInternalResult.InvalidInput; } } return result; } private NvInternalResult UnmapBuffer(ref UnmapBufferArguments arguments) { lock (_asContext) { if (_asContext.RemoveMap(arguments.Offset, out ulong size)) { if (size != 0) { _memoryAllocator.DeallocateRange(arguments.Offset, size); _asContext.Gmm.Unmap(arguments.Offset, size); } } else { Logger.Warning?.Print(LogClass.ServiceNv, $"Invalid buffer offset {arguments.Offset:x16}!"); } } return NvInternalResult.Success; } private NvInternalResult MapBufferEx(ref MapBufferExArguments arguments) { const string MapErrorMsg = "Failed to map fixed buffer with offset 0x{0:x16}, size 0x{1:x16} and alignment 0x{2:x16}!"; ulong physicalAddress; if ((arguments.Flags & AddressSpaceFlags.RemapSubRange) != 0) { lock (_asContext) { if (_asContext.TryGetMapPhysicalAddress(arguments.Offset, out physicalAddress)) { ulong virtualAddress = arguments.Offset + arguments.BufferOffset; physicalAddress += arguments.BufferOffset; _asContext.Gmm.Map(physicalAddress, virtualAddress, arguments.MappingSize, (PteKind)arguments.Kind); return NvInternalResult.Success; } else { Logger.Warning?.Print(LogClass.ServiceNv, $"Address 0x{arguments.Offset:x16} not mapped!"); return NvInternalResult.InvalidInput; } } } NvMapHandle map = NvMapDeviceFile.GetMapFromHandle(Owner, arguments.NvMapHandle); if (map == null) { Logger.Warning?.Print(LogClass.ServiceNv, $"Invalid NvMap handle 0x{arguments.NvMapHandle:x8}!"); return NvInternalResult.InvalidInput; } ulong pageSize = (ulong)arguments.PageSize; if (pageSize == 0) { pageSize = (ulong)map.Align; } physicalAddress = map.Address + arguments.BufferOffset; ulong size = arguments.MappingSize; if (size == 0) { size = (uint)map.Size; } NvInternalResult result = NvInternalResult.Success; lock (_asContext) { // Note: When the fixed offset flag is not set, // the Offset field holds the alignment size instead. bool virtualAddressAllocated = (arguments.Flags & AddressSpaceFlags.FixedOffset) == 0; if (!virtualAddressAllocated) { if (_asContext.ValidateFixedBuffer(arguments.Offset, size, pageSize)) { _asContext.Gmm.Map(physicalAddress, arguments.Offset, size, (PteKind)arguments.Kind); } else { string message = string.Format(MapErrorMsg, arguments.Offset, size, pageSize); Logger.Warning?.Print(LogClass.ServiceNv, message); result = NvInternalResult.InvalidInput; } } else { ulong va = _memoryAllocator.GetFreeAddress(size, out ulong freeAddressStartPosition, pageSize); if (va != NvMemoryAllocator.PteUnmapped) { _memoryAllocator.AllocateRange(va, size, freeAddressStartPosition); } _asContext.Gmm.Map(physicalAddress, va, size, (PteKind)arguments.Kind); arguments.Offset = va; } if (arguments.Offset == NvMemoryAllocator.PteUnmapped) { arguments.Offset = 0; Logger.Warning?.Print(LogClass.ServiceNv, $"Failed to map size 0x{size:x16}!"); result = NvInternalResult.InvalidInput; } else { _asContext.AddMap(arguments.Offset, size, physicalAddress, virtualAddressAllocated); } } return result; } private NvInternalResult GetVaRegions(ref GetVaRegionsArguments arguments) { int vaRegionStructSize = Unsafe.SizeOf<VaRegion>(); Debug.Assert(vaRegionStructSize == 0x18); Debug.Assert(_pageSizes.Length == 2); uint writeEntries = (uint)(arguments.BufferSize / vaRegionStructSize); if (writeEntries > _pageSizes.Length) { writeEntries = (uint)_pageSizes.Length; } for (uint i = 0; i < writeEntries; i++) { ref var region = ref arguments.Regions[(int)i]; var vmRegion = _vmRegions[i]; uint pageSize = _pageSizes[i]; region.PageSize = pageSize; region.Offset = vmRegion.Start; region.Pages = (vmRegion.Limit - vmRegion.Start) / pageSize; region.Padding = 0; } arguments.BufferSize = (uint)(_pageSizes.Length * vaRegionStructSize); return NvInternalResult.Success; } private NvInternalResult InitializeEx(ref InitializeExArguments arguments) { Logger.Stub?.PrintStub(LogClass.ServiceNv); return NvInternalResult.Success; } private NvInternalResult Remap(Span<RemapArguments> arguments) { MemoryManager gmm = _asContext.Gmm; for (int index = 0; index < arguments.Length; index++) { ref RemapArguments argument = ref arguments[index]; ulong gpuVa = (ulong)argument.GpuOffset << 16; ulong size = (ulong)argument.Pages << 16; int nvmapHandle = argument.NvMapHandle; if (nvmapHandle == 0) { gmm.Unmap(gpuVa, size); } else { ulong mapOffs = (ulong)argument.MapOffset << 16; PteKind kind = (PteKind)argument.Kind; NvMapHandle map = NvMapDeviceFile.GetMapFromHandle(Owner, nvmapHandle); if (map == null) { Logger.Warning?.Print(LogClass.ServiceNv, $"Invalid NvMap handle 0x{nvmapHandle:x8}!"); return NvInternalResult.InvalidInput; } gmm.Map(mapOffs + map.Address, gpuVa, size, kind); } } return NvInternalResult.Success; } public override void Close() { } } }