0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2024-12-23 08:05:47 +00:00
Ryujinx/Ryujinx.Graphics.Shader/Translation/Rewriter.cs
riperiperi f23b2878cc
Shader: Add fallback for LDG from "ube" buffer ranges. (#4027)
We have a conversion from LDG on the compute shader to a special constant buffer binding that's used to exceed hardware limits on compute, but it was only running if the byte offset could be identified. The fallback that checks all of the bindings at runtime only checks the storage buffers.

This PR adds checking ube ranges to the LoadGlobal fallback. This extends the changes in #4011 to only check ube entries which are accessed by the shader.

Fixes particles affected by the wind in The Legend of Zelda: Breath of the Wild. May fix other weird issues with compute shaders in some games.

Try a bunch of games and drivers to make sure they don't blow up loading constants willynilly from searchable buffers.
2022-12-06 23:15:44 +00:00

687 lines
No EOL
25 KiB
C#

using Ryujinx.Graphics.Shader.Decoders;
using Ryujinx.Graphics.Shader.IntermediateRepresentation;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Numerics;
using static Ryujinx.Graphics.Shader.IntermediateRepresentation.OperandHelper;
using static Ryujinx.Graphics.Shader.Translation.GlobalMemory;
namespace Ryujinx.Graphics.Shader.Translation
{
static class Rewriter
{
public static void RunPass(BasicBlock[] blocks, ShaderConfig config)
{
bool isVertexShader = config.Stage == ShaderStage.Vertex;
bool hasConstantBufferDrawParameters = config.GpuAccessor.QueryHasConstantBufferDrawParameters();
bool supportsSnormBufferTextureFormat = config.GpuAccessor.QueryHostSupportsSnormBufferTextureFormat();
for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
{
BasicBlock block = blocks[blkIndex];
for (LinkedListNode<INode> node = block.Operations.First; node != null;)
{
if (node.Value is not Operation operation)
{
node = node.Next;
continue;
}
if (isVertexShader)
{
if (hasConstantBufferDrawParameters)
{
if (ReplaceConstantBufferWithDrawParameters(operation))
{
config.SetUsedFeature(FeatureFlags.DrawParameters);
}
}
else if (HasConstantBufferDrawParameters(operation))
{
config.SetUsedFeature(FeatureFlags.DrawParameters);
}
}
LinkedListNode<INode> nextNode = node.Next;
if (operation is TextureOperation texOp)
{
if (texOp.Inst == Instruction.TextureSample)
{
node = RewriteTextureSample(node, config);
if (texOp.Type == SamplerType.TextureBuffer && !supportsSnormBufferTextureFormat)
{
node = InsertSnormNormalization(node, config);
}
}
nextNode = node.Next;
}
else if (UsesGlobalMemory(operation.Inst))
{
nextNode = RewriteGlobalAccess(node, config)?.Next ?? nextNode;
}
node = nextNode;
}
}
}
private static LinkedListNode<INode> RewriteGlobalAccess(LinkedListNode<INode> node, ShaderConfig config)
{
Operation operation = (Operation)node.Value;
bool isAtomic = operation.Inst.IsAtomic();
bool isStg16Or8 = operation.Inst == Instruction.StoreGlobal16 || operation.Inst == Instruction.StoreGlobal8;
bool isWrite = isAtomic || operation.Inst == Instruction.StoreGlobal || isStg16Or8;
Operation storageOp = null;
Operand PrependOperation(Instruction inst, params Operand[] sources)
{
Operand local = Local();
node.List.AddBefore(node, new Operation(inst, local, sources));
return local;
}
Operand PrependExistingOperation(Operation operation)
{
Operand local = Local();
operation.Dest = local;
node.List.AddBefore(node, operation);
return local;
}
Operand addrLow = operation.GetSource(0);
Operand addrHigh = operation.GetSource(1);
Operand sbBaseAddrLow = Const(0);
Operand sbSlot = Const(0);
Operand alignMask = Const(-config.GpuAccessor.QueryHostStorageBufferOffsetAlignment());
Operand BindingRangeCheck(int cbOffset, out Operand baseAddrLow)
{
baseAddrLow = Cbuf(0, cbOffset);
Operand baseAddrHigh = Cbuf(0, cbOffset + 1);
Operand size = Cbuf(0, cbOffset + 2);
Operand offset = PrependOperation(Instruction.Subtract, addrLow, baseAddrLow);
Operand borrow = PrependOperation(Instruction.CompareLessU32, addrLow, baseAddrLow);
Operand inRangeLow = PrependOperation(Instruction.CompareLessU32, offset, size);
Operand addrHighBorrowed = PrependOperation(Instruction.Add, addrHigh, borrow);
Operand inRangeHigh = PrependOperation(Instruction.CompareEqual, addrHighBorrowed, baseAddrHigh);
return PrependOperation(Instruction.BitwiseAnd, inRangeLow, inRangeHigh);
}
int sbUseMask = config.AccessibleStorageBuffersMask;
while (sbUseMask != 0)
{
int slot = BitOperations.TrailingZeroCount(sbUseMask);
sbUseMask &= ~(1 << slot);
config.SetUsedStorageBuffer(slot, isWrite);
int cbOffset = GetStorageCbOffset(config.Stage, slot);
Operand inRange = BindingRangeCheck(cbOffset, out Operand baseAddrLow);
sbBaseAddrLow = PrependOperation(Instruction.ConditionalSelect, inRange, baseAddrLow, sbBaseAddrLow);
sbSlot = PrependOperation(Instruction.ConditionalSelect, inRange, Const(slot), sbSlot);
}
if (config.AccessibleStorageBuffersMask != 0)
{
Operand baseAddrTrunc = PrependOperation(Instruction.BitwiseAnd, sbBaseAddrLow, alignMask);
Operand byteOffset = PrependOperation(Instruction.Subtract, addrLow, baseAddrTrunc);
Operand[] sources = new Operand[operation.SourcesCount];
sources[0] = sbSlot;
if (isStg16Or8)
{
sources[1] = byteOffset;
}
else
{
sources[1] = PrependOperation(Instruction.ShiftRightU32, byteOffset, Const(2));
}
for (int index = 2; index < operation.SourcesCount; index++)
{
sources[index] = operation.GetSource(index);
}
if (isAtomic)
{
Instruction inst = (operation.Inst & ~Instruction.MrMask) | Instruction.MrStorage;
storageOp = new Operation(inst, operation.Dest, sources);
}
else if (operation.Inst == Instruction.LoadGlobal)
{
storageOp = new Operation(Instruction.LoadStorage, operation.Dest, sources);
}
else
{
Instruction storeInst = operation.Inst switch
{
Instruction.StoreGlobal16 => Instruction.StoreStorage16,
Instruction.StoreGlobal8 => Instruction.StoreStorage8,
_ => Instruction.StoreStorage
};
storageOp = new Operation(storeInst, null, sources);
}
}
else if (operation.Dest != null)
{
storageOp = new Operation(Instruction.Copy, operation.Dest, Const(0));
}
if (operation.Inst == Instruction.LoadGlobal)
{
int cbeUseMask = config.AccessibleConstantBuffersMask;
while (cbeUseMask != 0)
{
int slot = BitOperations.TrailingZeroCount(cbeUseMask);
int cbSlot = UbeFirstCbuf + slot;
cbeUseMask &= ~(1 << slot);
config.SetUsedConstantBuffer(cbSlot);
Operand previousResult = PrependExistingOperation(storageOp);
int cbOffset = GetConstantUbeOffset(slot);
Operand inRange = BindingRangeCheck(cbOffset, out Operand baseAddrLow);
Operand baseAddrTruncConst = PrependOperation(Instruction.BitwiseAnd, baseAddrLow, alignMask);
Operand byteOffsetConst = PrependOperation(Instruction.Subtract, addrLow, baseAddrTruncConst);
Operand cbIndex = PrependOperation(Instruction.ShiftRightU32, byteOffsetConst, Const(2));
Operand[] sourcesCb = new Operand[operation.SourcesCount];
sourcesCb[0] = Const(cbSlot);
sourcesCb[1] = cbIndex;
for (int index = 2; index < operation.SourcesCount; index++)
{
sourcesCb[index] = operation.GetSource(index);
}
Operand ldcResult = PrependOperation(Instruction.LoadConstant, sourcesCb);
storageOp = new Operation(Instruction.ConditionalSelect, operation.Dest, inRange, ldcResult, previousResult);
}
}
for (int index = 0; index < operation.SourcesCount; index++)
{
operation.SetSource(index, null);
}
LinkedListNode<INode> oldNode = node;
LinkedList<INode> oldNodeList = oldNode.List;
if (storageOp != null)
{
node = node.List.AddBefore(node, storageOp);
}
else
{
node = null;
}
oldNodeList.Remove(oldNode);
return node;
}
private static LinkedListNode<INode> RewriteTextureSample(LinkedListNode<INode> node, ShaderConfig config)
{
TextureOperation texOp = (TextureOperation)node.Value;
bool hasOffset = (texOp.Flags & TextureFlags.Offset) != 0;
bool hasOffsets = (texOp.Flags & TextureFlags.Offsets) != 0;
bool hasInvalidOffset = (hasOffset || hasOffsets) && !config.GpuAccessor.QueryHostSupportsNonConstantTextureOffset();
bool isBindless = (texOp.Flags & TextureFlags.Bindless) != 0;
bool isCoordNormalized = isBindless || config.GpuAccessor.QueryTextureCoordNormalized(texOp.Handle, texOp.CbufSlot);
if (!hasInvalidOffset && isCoordNormalized)
{
return node;
}
bool isGather = (texOp.Flags & TextureFlags.Gather) != 0;
bool hasDerivatives = (texOp.Flags & TextureFlags.Derivatives) != 0;
bool intCoords = (texOp.Flags & TextureFlags.IntCoords) != 0;
bool hasLodBias = (texOp.Flags & TextureFlags.LodBias) != 0;
bool hasLodLevel = (texOp.Flags & TextureFlags.LodLevel) != 0;
bool isArray = (texOp.Type & SamplerType.Array) != 0;
bool isIndexed = (texOp.Type & SamplerType.Indexed) != 0;
bool isMultisample = (texOp.Type & SamplerType.Multisample) != 0;
bool isShadow = (texOp.Type & SamplerType.Shadow) != 0;
int coordsCount = texOp.Type.GetDimensions();
int offsetsCount;
if (hasOffsets)
{
offsetsCount = coordsCount * 4;
}
else if (hasOffset)
{
offsetsCount = coordsCount;
}
else
{
offsetsCount = 0;
}
Operand[] offsets = new Operand[offsetsCount];
Operand[] sources = new Operand[texOp.SourcesCount - offsetsCount];
int copyCount = 0;
if (isBindless || isIndexed)
{
copyCount++;
}
Operand[] lodSources = new Operand[copyCount + coordsCount];
for (int index = 0; index < lodSources.Length; index++)
{
lodSources[index] = texOp.GetSource(index);
}
copyCount += coordsCount;
if (isArray)
{
copyCount++;
}
if (isShadow)
{
copyCount++;
}
if (hasDerivatives)
{
copyCount += coordsCount * 2;
}
if (isMultisample)
{
copyCount++;
}
else if (hasLodLevel)
{
copyCount++;
}
int srcIndex = 0;
int dstIndex = 0;
for (int index = 0; index < copyCount; index++)
{
sources[dstIndex++] = texOp.GetSource(srcIndex++);
}
bool areAllOffsetsConstant = true;
for (int index = 0; index < offsetsCount; index++)
{
Operand offset = texOp.GetSource(srcIndex++);
areAllOffsetsConstant &= offset.Type == OperandType.Constant;
offsets[index] = offset;
}
hasInvalidOffset &= !areAllOffsetsConstant;
if (!hasInvalidOffset && isCoordNormalized)
{
return node;
}
if (hasLodBias)
{
sources[dstIndex++] = texOp.GetSource(srcIndex++);
}
if (isGather && !isShadow)
{
sources[dstIndex++] = texOp.GetSource(srcIndex++);
}
int coordsIndex = isBindless || isIndexed ? 1 : 0;
int componentIndex = texOp.Index;
Operand Int(Operand value)
{
Operand res = Local();
node.List.AddBefore(node, new Operation(Instruction.ConvertFP32ToS32, res, value));
return res;
}
Operand Float(Operand value)
{
Operand res = Local();
node.List.AddBefore(node, new Operation(Instruction.ConvertS32ToFP32, res, value));
return res;
}
// Emulate non-normalized coordinates by normalizing the coordinates on the shader.
// Without normalization, the coordinates are expected to the in the [0, W or H] range,
// and otherwise, it is expected to be in the [0, 1] range.
// We normalize by dividing the coords by the texture size.
if (!isCoordNormalized && !intCoords)
{
config.SetUsedFeature(FeatureFlags.IntegerSampling);
int normCoordsCount = (texOp.Type & SamplerType.Mask) == SamplerType.TextureCube ? 2 : coordsCount;
for (int index = 0; index < normCoordsCount; index++)
{
Operand coordSize = Local();
Operand[] texSizeSources;
if (isBindless || isIndexed)
{
texSizeSources = new Operand[] { sources[0], Const(0) };
}
else
{
texSizeSources = new Operand[] { Const(0) };
}
node.List.AddBefore(node, new TextureOperation(
Instruction.TextureSize,
texOp.Type,
texOp.Format,
texOp.Flags,
texOp.CbufSlot,
texOp.Handle,
index,
coordSize,
texSizeSources));
config.SetUsedTexture(Instruction.TextureSize, texOp.Type, texOp.Format, texOp.Flags, texOp.CbufSlot, texOp.Handle);
Operand source = sources[coordsIndex + index];
Operand coordNormalized = Local();
node.List.AddBefore(node, new Operation(Instruction.FP32 | Instruction.Divide, coordNormalized, source, Float(coordSize)));
sources[coordsIndex + index] = coordNormalized;
}
}
// Technically, non-constant texture offsets are not allowed (according to the spec),
// however some GPUs does support that.
// For GPUs where it is not supported, we can replace the instruction with the following:
// For texture*Offset, we replace it by texture*, and add the offset to the P coords.
// The offset can be calculated as offset / textureSize(lod), where lod = textureQueryLod(coords).
// For texelFetchOffset, we replace it by texelFetch and add the offset to the P coords directly.
// For textureGatherOffset, we take advantage of the fact that the operation is already broken down
// to read the 4 pixels separately, and just replace it with 4 textureGather with a different offset
// for each pixel.
if (hasInvalidOffset)
{
if (intCoords)
{
for (int index = 0; index < coordsCount; index++)
{
Operand source = sources[coordsIndex + index];
Operand coordPlusOffset = Local();
node.List.AddBefore(node, new Operation(Instruction.Add, coordPlusOffset, source, offsets[index]));
sources[coordsIndex + index] = coordPlusOffset;
}
}
else
{
config.SetUsedFeature(FeatureFlags.IntegerSampling);
Operand lod = Local();
node.List.AddBefore(node, new TextureOperation(
Instruction.Lod,
texOp.Type,
texOp.Format,
texOp.Flags,
texOp.CbufSlot,
texOp.Handle,
0,
lod,
lodSources));
for (int index = 0; index < coordsCount; index++)
{
Operand coordSize = Local();
Operand[] texSizeSources;
if (isBindless || isIndexed)
{
texSizeSources = new Operand[] { sources[0], Int(lod) };
}
else
{
texSizeSources = new Operand[] { Int(lod) };
}
node.List.AddBefore(node, new TextureOperation(
Instruction.TextureSize,
texOp.Type,
texOp.Format,
texOp.Flags,
texOp.CbufSlot,
texOp.Handle,
index,
coordSize,
texSizeSources));
config.SetUsedTexture(Instruction.TextureSize, texOp.Type, texOp.Format, texOp.Flags, texOp.CbufSlot, texOp.Handle);
Operand offset = Local();
Operand intOffset = offsets[index + (hasOffsets ? texOp.Index * coordsCount : 0)];
node.List.AddBefore(node, new Operation(Instruction.FP32 | Instruction.Divide, offset, Float(intOffset), Float(coordSize)));
Operand source = sources[coordsIndex + index];
Operand coordPlusOffset = Local();
node.List.AddBefore(node, new Operation(Instruction.FP32 | Instruction.Add, coordPlusOffset, source, offset));
sources[coordsIndex + index] = coordPlusOffset;
}
}
if (isGather && !isShadow)
{
Operand gatherComponent = sources[dstIndex - 1];
Debug.Assert(gatherComponent.Type == OperandType.Constant);
componentIndex = gatherComponent.Value;
}
}
TextureOperation newTexOp = new TextureOperation(
Instruction.TextureSample,
texOp.Type,
texOp.Format,
texOp.Flags & ~(TextureFlags.Offset | TextureFlags.Offsets),
texOp.CbufSlot,
texOp.Handle,
componentIndex,
texOp.Dest,
sources);
for (int index = 0; index < texOp.SourcesCount; index++)
{
texOp.SetSource(index, null);
}
LinkedListNode<INode> oldNode = node;
node = node.List.AddBefore(node, newTexOp);
node.List.Remove(oldNode);
return node;
}
private static LinkedListNode<INode> InsertSnormNormalization(LinkedListNode<INode> node, ShaderConfig config)
{
TextureOperation texOp = (TextureOperation)node.Value;
// We can't query the format of a bindless texture,
// because the handle is unknown, it can have any format.
if (texOp.Flags.HasFlag(TextureFlags.Bindless))
{
return node;
}
TextureFormat format = config.GpuAccessor.QueryTextureFormat(texOp.Handle, texOp.CbufSlot);
int maxPositive = format switch
{
TextureFormat.R8Snorm => sbyte.MaxValue,
TextureFormat.R8G8Snorm => sbyte.MaxValue,
TextureFormat.R8G8B8A8Snorm => sbyte.MaxValue,
TextureFormat.R16Snorm => short.MaxValue,
TextureFormat.R16G16Snorm => short.MaxValue,
TextureFormat.R16G16B16A16Snorm => short.MaxValue,
_ => 0
};
// The value being 0 means that the format is not a SNORM format,
// so there's nothing to do here.
if (maxPositive == 0)
{
return node;
}
// Do normalization. We assume SINT formats are being used
// as replacement for SNORM (which is not supported).
INode[] uses = texOp.Dest.UseOps.ToArray();
Operation convOp = new Operation(Instruction.ConvertS32ToFP32, Local(), texOp.Dest);
Operation normOp = new Operation(Instruction.FP32 | Instruction.Multiply, Local(), convOp.Dest, ConstF(1f / maxPositive));
node = node.List.AddAfter(node, convOp);
node = node.List.AddAfter(node, normOp);
foreach (INode useOp in uses)
{
if (useOp is not Operation op)
{
continue;
}
// Replace all uses of the texture pixel value with the normalized value.
for (int index = 0; index < op.SourcesCount; index++)
{
if (op.GetSource(index) == texOp.Dest)
{
op.SetSource(index, normOp.Dest);
}
}
}
return node;
}
private static bool ReplaceConstantBufferWithDrawParameters(Operation operation)
{
bool modified = false;
for (int srcIndex = 0; srcIndex < operation.SourcesCount; srcIndex++)
{
Operand src = operation.GetSource(srcIndex);
if (src.Type == OperandType.ConstantBuffer && src.GetCbufSlot() == 0)
{
switch (src.GetCbufOffset())
{
case Constants.NvnBaseVertexByteOffset / 4:
operation.SetSource(srcIndex, Attribute(AttributeConsts.BaseVertex));
modified = true;
break;
case Constants.NvnBaseInstanceByteOffset / 4:
operation.SetSource(srcIndex, Attribute(AttributeConsts.BaseInstance));
modified = true;
break;
case Constants.NvnDrawIndexByteOffset / 4:
operation.SetSource(srcIndex, Attribute(AttributeConsts.DrawIndex));
modified = true;
break;
}
}
}
return modified;
}
private static bool HasConstantBufferDrawParameters(Operation operation)
{
for (int srcIndex = 0; srcIndex < operation.SourcesCount; srcIndex++)
{
Operand src = operation.GetSource(srcIndex);
if (src.Type == OperandType.ConstantBuffer && src.GetCbufSlot() == 0)
{
switch (src.GetCbufOffset())
{
case Constants.NvnBaseVertexByteOffset / 4:
case Constants.NvnBaseInstanceByteOffset / 4:
case Constants.NvnDrawIndexByteOffset / 4:
return true;
}
}
}
return false;
}
}
}