0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-25 19:52:00 +00:00
Ryujinx/Ryujinx.Tests/Cpu/CpuTestSimdRegElemF.cs
LDj3SNuD 894459fcd7 Add Fmls_Se, Fmulx_Se/Ve, Smov_S Inst.; Opt. Clz/Clz_V, Cnt_V, Shl_V, S/Ushr_V, S/Usra_V Inst.; Add 11 Tests. Some fixes. (#449)
* Update AOpCodeTable.cs

* Update AInstEmitSimdMove.cs

* Update AInstEmitSimdArithmetic.cs

* Update AInstEmitSimdShift.cs

* Update ASoftFallback.cs

* Update ASoftFloat.cs

* Update AOpCodeSimdRegElemF.cs

* Update CpuTestSimdIns.cs

* Update CpuTestSimdRegElem.cs

* Create CpuTestSimdRegElemF.cs

* Update CpuTestSimd.cs

* Update CpuTestSimdReg.cs

* Superseded Fmul_Se Test. Nit.

* Address PR feedback.

* Address PR feedback.

* Update AInstEmitSimdArithmetic.cs

* Update ASoftFallback.cs

* Update AInstEmitAlu.cs

* Update AInstEmitSimdShift.cs
2018-10-13 23:35:16 -03:00

424 lines
16 KiB
C#

#define SimdRegElemF
using ChocolArm64.State;
using NUnit.Framework;
using System.Collections.Generic;
using System.Runtime.Intrinsics;
namespace Ryujinx.Tests.Cpu
{
[Category("SimdRegElemF")] // Tested: second half of 2018.
public sealed class CpuTestSimdRegElemF : CpuTest
{
#if SimdRegElemF
#region "ValueSource (Types)"
private static IEnumerable<ulong> _1S_F_()
{
yield return 0x00000000FF7FFFFFul; // -Max Normal (float.MinValue)
yield return 0x0000000080800000ul; // -Min Normal
yield return 0x00000000807FFFFFul; // -Max Subnormal
yield return 0x0000000080000001ul; // -Min Subnormal (-float.Epsilon)
yield return 0x000000007F7FFFFFul; // +Max Normal (float.MaxValue)
yield return 0x0000000000800000ul; // +Min Normal
yield return 0x00000000007FFFFFul; // +Max Subnormal
yield return 0x0000000000000001ul; // +Min Subnormal (float.Epsilon)
if (!NoZeros)
{
yield return 0x0000000080000000ul; // -Zero
yield return 0x0000000000000000ul; // +Zero
}
if (!NoInfs)
{
yield return 0x00000000FF800000ul; // -Infinity
yield return 0x000000007F800000ul; // +Infinity
}
if (!NoNaNs)
{
yield return 0x00000000FFC00000ul; // -QNaN (all zeros payload) (float.NaN)
yield return 0x00000000FFBFFFFFul; // -SNaN (all ones payload)
yield return 0x000000007FC00000ul; // +QNaN (all zeros payload) (-float.NaN) (DefaultNaN)
yield return 0x000000007FBFFFFFul; // +SNaN (all ones payload)
}
for (int Cnt = 1; Cnt <= RndCnt; Cnt++)
{
ulong Grbg = TestContext.CurrentContext.Random.NextUInt();
ulong Rnd1 = GenNormal_S();
ulong Rnd2 = GenSubnormal_S();
yield return (Grbg << 32) | Rnd1;
yield return (Grbg << 32) | Rnd2;
}
}
private static IEnumerable<ulong> _2S_F_()
{
yield return 0xFF7FFFFFFF7FFFFFul; // -Max Normal (float.MinValue)
yield return 0x8080000080800000ul; // -Min Normal
yield return 0x807FFFFF807FFFFFul; // -Max Subnormal
yield return 0x8000000180000001ul; // -Min Subnormal (-float.Epsilon)
yield return 0x7F7FFFFF7F7FFFFFul; // +Max Normal (float.MaxValue)
yield return 0x0080000000800000ul; // +Min Normal
yield return 0x007FFFFF007FFFFFul; // +Max Subnormal
yield return 0x0000000100000001ul; // +Min Subnormal (float.Epsilon)
if (!NoZeros)
{
yield return 0x8000000080000000ul; // -Zero
yield return 0x0000000000000000ul; // +Zero
}
if (!NoInfs)
{
yield return 0xFF800000FF800000ul; // -Infinity
yield return 0x7F8000007F800000ul; // +Infinity
}
if (!NoNaNs)
{
yield return 0xFFC00000FFC00000ul; // -QNaN (all zeros payload) (float.NaN)
yield return 0xFFBFFFFFFFBFFFFFul; // -SNaN (all ones payload)
yield return 0x7FC000007FC00000ul; // +QNaN (all zeros payload) (-float.NaN) (DefaultNaN)
yield return 0x7FBFFFFF7FBFFFFFul; // +SNaN (all ones payload)
}
for (int Cnt = 1; Cnt <= RndCnt; Cnt++)
{
ulong Rnd1 = GenNormal_S();
ulong Rnd2 = GenSubnormal_S();
yield return (Rnd1 << 32) | Rnd1;
yield return (Rnd2 << 32) | Rnd2;
}
}
private static IEnumerable<ulong> _1D_F_()
{
yield return 0xFFEFFFFFFFFFFFFFul; // -Max Normal (double.MinValue)
yield return 0x8010000000000000ul; // -Min Normal
yield return 0x800FFFFFFFFFFFFFul; // -Max Subnormal
yield return 0x8000000000000001ul; // -Min Subnormal (-double.Epsilon)
yield return 0x7FEFFFFFFFFFFFFFul; // +Max Normal (double.MaxValue)
yield return 0x0010000000000000ul; // +Min Normal
yield return 0x000FFFFFFFFFFFFFul; // +Max Subnormal
yield return 0x0000000000000001ul; // +Min Subnormal (double.Epsilon)
if (!NoZeros)
{
yield return 0x8000000000000000ul; // -Zero
yield return 0x0000000000000000ul; // +Zero
}
if (!NoInfs)
{
yield return 0xFFF0000000000000ul; // -Infinity
yield return 0x7FF0000000000000ul; // +Infinity
}
if (!NoNaNs)
{
yield return 0xFFF8000000000000ul; // -QNaN (all zeros payload) (double.NaN)
yield return 0xFFF7FFFFFFFFFFFFul; // -SNaN (all ones payload)
yield return 0x7FF8000000000000ul; // +QNaN (all zeros payload) (-double.NaN) (DefaultNaN)
yield return 0x7FF7FFFFFFFFFFFFul; // +SNaN (all ones payload)
}
for (int Cnt = 1; Cnt <= RndCnt; Cnt++)
{
ulong Rnd1 = GenNormal_D();
ulong Rnd2 = GenSubnormal_D();
yield return Rnd1;
yield return Rnd2;
}
}
#endregion
#region "ValueSource (Opcodes)"
private static uint[] _F_Mla_Mls_Se_S_()
{
return new uint[]
{
0x5F821020u, // FMLA S0, S1, V2.S[0]
0x5F825020u // FMLS S0, S1, V2.S[0]
};
}
private static uint[] _F_Mla_Mls_Se_D_()
{
return new uint[]
{
0x5FC21020u, // FMLA D0, D1, V2.D[0]
0x5FC25020u // FMLS D0, D1, V2.D[0]
};
}
private static uint[] _F_Mla_Mls_Ve_2S_4S_()
{
return new uint[]
{
0x0F801000u, // FMLA V0.2S, V0.2S, V0.S[0]
0x0F805000u // FMLS V0.2S, V0.2S, V0.S[0]
};
}
private static uint[] _F_Mla_Mls_Ve_2D_()
{
return new uint[]
{
0x4FC01000u, // FMLA V0.2D, V0.2D, V0.D[0]
0x4FC05000u // FMLS V0.2D, V0.2D, V0.D[0]
};
}
private static uint[] _F_Mul_Mulx_Se_S_()
{
return new uint[]
{
0x5F829020u, // FMUL S0, S1, V2.S[0]
0x7F829020u // FMULX S0, S1, V2.S[0]
};
}
private static uint[] _F_Mul_Mulx_Se_D_()
{
return new uint[]
{
0x5FC29020u, // FMUL D0, D1, V2.D[0]
0x7FC29020u // FMULX D0, D1, V2.D[0]
};
}
private static uint[] _F_Mul_Mulx_Ve_2S_4S_()
{
return new uint[]
{
0x0F809000u, // FMUL V0.2S, V0.2S, V0.S[0]
0x2F809000u // FMULX V0.2S, V0.2S, V0.S[0]
};
}
private static uint[] _F_Mul_Mulx_Ve_2D_()
{
return new uint[]
{
0x4FC09000u, // FMUL V0.2D, V0.2D, V0.D[0]
0x6FC09000u // FMULX V0.2D, V0.2D, V0.D[0]
};
}
#endregion
private const int RndCnt = 2;
private static readonly bool NoZeros = false;
private static readonly bool NoInfs = false;
private static readonly bool NoNaNs = false;
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Se_S([ValueSource("_F_Mla_Mls_Se_S_")] uint Opcodes,
[ValueSource("_1S_F_")] ulong Z,
[ValueSource("_1S_F_")] ulong A,
[ValueSource("_2S_F_")] ulong B,
[Values(0u, 1u, 2u, 3u)] uint Index)
{
uint H = (Index >> 1) & 1;
uint L = Index & 1;
Opcodes |= (L << 21) | (H << 11);
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0(A);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FPSR.IOC, FpSkips.IfUnderflow, FpTolerances.UpToOneUlps_S);
}
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Se_D([ValueSource("_F_Mla_Mls_Se_D_")] uint Opcodes,
[ValueSource("_1D_F_")] ulong Z,
[ValueSource("_1D_F_")] ulong A,
[ValueSource("_1D_F_")] ulong B,
[Values(0u, 1u)] uint Index)
{
uint H = Index & 1;
Opcodes |= H << 11;
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0(A);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FPSR.IOC, FpSkips.IfUnderflow, FpTolerances.UpToOneUlps_D);
}
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Ve_2S_4S([ValueSource("_F_Mla_Mls_Ve_2S_4S_")] uint Opcodes,
[Values(0u)] uint Rd,
[Values(1u, 0u)] uint Rn,
[Values(2u, 0u)] uint Rm,
[ValueSource("_2S_F_")] ulong Z,
[ValueSource("_2S_F_")] ulong A,
[ValueSource("_2S_F_")] ulong B,
[Values(0u, 1u, 2u, 3u)] uint Index,
[Values(0b0u, 0b1u)] uint Q) // <2S, 4S>
{
uint H = (Index >> 1) & 1;
uint L = Index & 1;
Opcodes |= ((Rm & 31) << 16) | ((Rn & 31) << 5) | ((Rd & 31) << 0);
Opcodes |= (L << 21) | (H << 11);
Opcodes |= ((Q & 1) << 30);
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0E1(A, A * Q);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FPSR.IOC, FpSkips.IfUnderflow, FpTolerances.UpToOneUlps_S);
}
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Ve_2D([ValueSource("_F_Mla_Mls_Ve_2D_")] uint Opcodes,
[Values(0u)] uint Rd,
[Values(1u, 0u)] uint Rn,
[Values(2u, 0u)] uint Rm,
[ValueSource("_1D_F_")] ulong Z,
[ValueSource("_1D_F_")] ulong A,
[ValueSource("_1D_F_")] ulong B,
[Values(0u, 1u)] uint Index)
{
uint H = Index & 1;
Opcodes |= ((Rm & 31) << 16) | ((Rn & 31) << 5) | ((Rd & 31) << 0);
Opcodes |= H << 11;
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0E1(A, A);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FPSR.IOC, FpSkips.IfUnderflow, FpTolerances.UpToOneUlps_D);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Se_S([ValueSource("_F_Mul_Mulx_Se_S_")] uint Opcodes,
[ValueSource("_1S_F_")] ulong A,
[ValueSource("_2S_F_")] ulong B,
[Values(0u, 1u, 2u, 3u)] uint Index)
{
uint H = (Index >> 1) & 1;
uint L = Index & 1;
Opcodes |= (L << 21) | (H << 11);
ulong Z = TestContext.CurrentContext.Random.NextULong();
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0(A);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FpsrMask: FPSR.IOC);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Se_D([ValueSource("_F_Mul_Mulx_Se_D_")] uint Opcodes,
[ValueSource("_1D_F_")] ulong A,
[ValueSource("_1D_F_")] ulong B,
[Values(0u, 1u)] uint Index)
{
uint H = Index & 1;
Opcodes |= H << 11;
ulong Z = TestContext.CurrentContext.Random.NextULong();
Vector128<float> V0 = MakeVectorE1(Z);
Vector128<float> V1 = MakeVectorE0(A);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FpsrMask: FPSR.IOC);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Ve_2S_4S([ValueSource("_F_Mul_Mulx_Ve_2S_4S_")] uint Opcodes,
[Values(0u)] uint Rd,
[Values(1u, 0u)] uint Rn,
[Values(2u, 0u)] uint Rm,
[ValueSource("_2S_F_")] ulong Z,
[ValueSource("_2S_F_")] ulong A,
[ValueSource("_2S_F_")] ulong B,
[Values(0u, 1u, 2u, 3u)] uint Index,
[Values(0b0u, 0b1u)] uint Q) // <2S, 4S>
{
uint H = (Index >> 1) & 1;
uint L = Index & 1;
Opcodes |= ((Rm & 31) << 16) | ((Rn & 31) << 5) | ((Rd & 31) << 0);
Opcodes |= (L << 21) | (H << 11);
Opcodes |= ((Q & 1) << 30);
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0E1(A, A * Q);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FpsrMask: FPSR.IOC);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Ve_2D([ValueSource("_F_Mul_Mulx_Ve_2D_")] uint Opcodes,
[Values(0u)] uint Rd,
[Values(1u, 0u)] uint Rn,
[Values(2u, 0u)] uint Rm,
[ValueSource("_1D_F_")] ulong Z,
[ValueSource("_1D_F_")] ulong A,
[ValueSource("_1D_F_")] ulong B,
[Values(0u, 1u)] uint Index)
{
uint H = Index & 1;
Opcodes |= ((Rm & 31) << 16) | ((Rn & 31) << 5) | ((Rd & 31) << 0);
Opcodes |= H << 11;
Vector128<float> V0 = MakeVectorE0E1(Z, Z);
Vector128<float> V1 = MakeVectorE0E1(A, A);
Vector128<float> V2 = MakeVectorE0E1(B, B * H);
int Fpcr = (int)TestContext.CurrentContext.Random.NextUInt() & (1 << (int)FPCR.DN);
AThreadState ThreadState = SingleOpcode(Opcodes, V0: V0, V1: V1, V2: V2, Fpcr: Fpcr);
CompareAgainstUnicorn(FpsrMask: FPSR.IOC);
}
#endif
}
}