0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2024-12-24 00:25:48 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/Common/KTimeManager.cs
jhorv 5131b71437
Reducing memory allocations (#4537)
* add RecyclableMemoryStream dependency and MemoryStreamManager

* organize BinaryReader/BinaryWriter extensions

* add StreamExtensions to reduce need for BinaryWriter

* simple replacments of MemoryStream with RecyclableMemoryStream

* add write ReadOnlySequence<byte> support to IVirtualMemoryManager

* avoid 0-length array creation

* rework IpcMessage and related types to greatly reduce memory allocation by using RecylableMemoryStream, keeping streams around longer, avoiding their creation when possible, and avoiding creation of BinaryReader and BinaryWriter when possible

* reduce LINQ-induced memory allocations with custom methods to query KPriorityQueue

* use RecyclableMemoryStream in StreamUtils, and use StreamUtils in EmbeddedResources

* add constants for nanosecond/millisecond conversions

* code formatting

* XML doc adjustments

* fix: StreamExtension.WriteByte not writing non-zero values for lengths <= 16

* XML Doc improvements. Implement StreamExtensions.WriteByte() block writes for large-enough count values.

* add copyless path for StreamExtension.Write(ReadOnlySpan<int>)

* add default implementation of IVirtualMemoryManager.Write(ulong, ReadOnlySequence<byte>); remove previous explicit implementations

* code style fixes

* remove LINQ completely from KScheduler/KPriorityQueue by implementing a custom struct-based enumerator
2023-03-17 13:14:50 +01:00

209 lines
No EOL
6.6 KiB
C#

using Ryujinx.Common;
using System;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Common
{
class KTimeManager : IDisposable
{
public static readonly long DefaultTimeIncrementNanoseconds = ConvertGuestTicksToNanoseconds(2);
private class WaitingObject
{
public IKFutureSchedulerObject Object { get; }
public long TimePoint { get; }
public WaitingObject(IKFutureSchedulerObject schedulerObj, long timePoint)
{
Object = schedulerObj;
TimePoint = timePoint;
}
}
private readonly KernelContext _context;
private readonly List<WaitingObject> _waitingObjects;
private AutoResetEvent _waitEvent;
private bool _keepRunning;
private long _enforceWakeupFromSpinWait;
private const long NanosecondsPerSecond = 1000000000L;
private const long NanosecondsPerMillisecond = 1000000L;
public KTimeManager(KernelContext context)
{
_context = context;
_waitingObjects = new List<WaitingObject>();
_keepRunning = true;
Thread work = new Thread(WaitAndCheckScheduledObjects)
{
Name = "HLE.TimeManager"
};
work.Start();
}
public void ScheduleFutureInvocation(IKFutureSchedulerObject schedulerObj, long timeout)
{
long startTime = PerformanceCounter.ElapsedTicks;
long timePoint = startTime + ConvertNanosecondsToHostTicks(timeout);
if (timePoint < startTime)
{
timePoint = long.MaxValue;
}
lock (_context.CriticalSection.Lock)
{
_waitingObjects.Add(new WaitingObject(schedulerObj, timePoint));
if (timeout < NanosecondsPerMillisecond)
{
Interlocked.Exchange(ref _enforceWakeupFromSpinWait, 1);
}
}
_waitEvent.Set();
}
public void UnscheduleFutureInvocation(IKFutureSchedulerObject schedulerObj)
{
lock (_context.CriticalSection.Lock)
{
_waitingObjects.RemoveAll(x => x.Object == schedulerObj);
}
}
private void WaitAndCheckScheduledObjects()
{
SpinWait spinWait = new SpinWait();
WaitingObject next;
using (_waitEvent = new AutoResetEvent(false))
{
while (_keepRunning)
{
lock (_context.CriticalSection.Lock)
{
Interlocked.Exchange(ref _enforceWakeupFromSpinWait, 0);
next = GetNextWaitingObject();
}
if (next != null)
{
long timePoint = PerformanceCounter.ElapsedTicks;
if (next.TimePoint > timePoint)
{
long ms = Math.Min((next.TimePoint - timePoint) / PerformanceCounter.TicksPerMillisecond, int.MaxValue);
if (ms > 0)
{
_waitEvent.WaitOne((int)ms);
}
else
{
while (Interlocked.Read(ref _enforceWakeupFromSpinWait) != 1 && PerformanceCounter.ElapsedTicks <= next.TimePoint)
{
if (spinWait.NextSpinWillYield)
{
Thread.Yield();
spinWait.Reset();
}
spinWait.SpinOnce();
}
spinWait.Reset();
}
}
bool timeUp = PerformanceCounter.ElapsedTicks >= next.TimePoint;
if (timeUp)
{
lock (_context.CriticalSection.Lock)
{
if (_waitingObjects.Remove(next))
{
next.Object.TimeUp();
}
}
}
}
else
{
_waitEvent.WaitOne();
}
}
}
}
private WaitingObject GetNextWaitingObject()
{
WaitingObject selected = null;
long lowestTimePoint = long.MaxValue;
for (int index = _waitingObjects.Count - 1; index >= 0; index--)
{
WaitingObject current = _waitingObjects[index];
if (current.TimePoint <= lowestTimePoint)
{
selected = current;
lowestTimePoint = current.TimePoint;
}
}
return selected;
}
public static long ConvertNanosecondsToMilliseconds(long time)
{
time /= NanosecondsPerMillisecond;
if ((ulong)time > int.MaxValue)
{
return int.MaxValue;
}
return time;
}
public static long ConvertMillisecondsToNanoseconds(long time)
{
return time * NanosecondsPerMillisecond;
}
public static long ConvertNanosecondsToHostTicks(long ns)
{
long nsDiv = ns / NanosecondsPerSecond;
long nsMod = ns % NanosecondsPerSecond;
long tickDiv = PerformanceCounter.TicksPerSecond / NanosecondsPerSecond;
long tickMod = PerformanceCounter.TicksPerSecond % NanosecondsPerSecond;
long baseTicks = (nsMod * tickMod + PerformanceCounter.TicksPerSecond - 1) / NanosecondsPerSecond;
return (nsDiv * tickDiv) * NanosecondsPerSecond + nsDiv * tickMod + nsMod * tickDiv + baseTicks;
}
public static long ConvertGuestTicksToNanoseconds(long ticks)
{
return (long)Math.Ceiling(ticks * (1000000000.0 / 19200000.0));
}
public static long ConvertHostTicksToTicks(long time)
{
return (long)((time / (double)PerformanceCounter.TicksPerSecond) * 19200000.0);
}
public void Dispose()
{
_keepRunning = false;
_waitEvent?.Set();
}
}
}