mirror of
https://github.com/GreemDev/Ryujinx.git
synced 2024-12-22 22:45:46 +00:00
e20abbf9cc
* Vulkan: Don't flush commands when creating most sync When the WaitForIdle method is called, we create sync as some internal GPU method may read back written buffer data. Some games randomly intersperse compute dispatch into their render passes, which result in this happening an unbounded number of times depending on how many times they run compute. Creating sync in Vulkan is expensive, as we need to flush the current command buffer so that it can be waited on. We have a limited number of active command buffers due to how we track resource usage, so submitting too many command buffers will force us to wait for them to return to the pool. This PR allows less "important" sync (things which are less likely to be waited on) to wait on a command buffer's result without submitting it, instead relying on AutoFlush or another, more important sync to flush it later on. Because of the possibility of us waiting for a command buffer that hasn't submitted yet, any thread needs to be able to force the active command buffer to submit. The ability to do this has been added to the backend multithreading via an "Interrupt", though it is not supported without multithreading. OpenGL drivers should already be doing something similar so they don't blow up when creating lots of sync, which is why this hasn't been a problem for these games over there. Improves Vulkan performance on Xenoblade DE, Pokemon Scarlet/Violet, and Zelda BOTW (still another large issue here) * Add strict argument This is technically a separate concern from whether the sync is a host syncpoint. * Remove _interrupted variable * Actually wait for the invoke This is required by AMD GPUs, and also may have caused some issues on other GPUs. * Remove unused using. * I don't know why it added these ones. * Address Feedback * Fix typo
488 lines
No EOL
15 KiB
C#
488 lines
No EOL
15 KiB
C#
using Ryujinx.Common;
|
|
using Ryujinx.Common.Configuration;
|
|
using Ryujinx.Graphics.GAL.Multithreading.Commands;
|
|
using Ryujinx.Graphics.GAL.Multithreading.Commands.Buffer;
|
|
using Ryujinx.Graphics.GAL.Multithreading.Commands.Renderer;
|
|
using Ryujinx.Graphics.GAL.Multithreading.Model;
|
|
using Ryujinx.Graphics.GAL.Multithreading.Resources;
|
|
using Ryujinx.Graphics.GAL.Multithreading.Resources.Programs;
|
|
using System;
|
|
using System.Diagnostics;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Runtime.InteropServices;
|
|
using System.Threading;
|
|
|
|
namespace Ryujinx.Graphics.GAL.Multithreading
|
|
{
|
|
/// <summary>
|
|
/// The ThreadedRenderer is a layer that can be put in front of any Renderer backend to make
|
|
/// its processing happen on a separate thread, rather than intertwined with the GPU emulation.
|
|
/// A new thread is created to handle the GPU command processing, separate from the renderer thread.
|
|
/// Calls to the renderer, pipeline and resources are queued to happen on the renderer thread.
|
|
/// </summary>
|
|
public class ThreadedRenderer : IRenderer
|
|
{
|
|
private const int SpanPoolBytes = 4 * 1024 * 1024;
|
|
private const int MaxRefsPerCommand = 2;
|
|
private const int QueueCount = 10000;
|
|
|
|
private int _elementSize;
|
|
private IRenderer _baseRenderer;
|
|
private Thread _gpuThread;
|
|
private Thread _backendThread;
|
|
private bool _disposed;
|
|
private bool _running;
|
|
|
|
private AutoResetEvent _frameComplete = new AutoResetEvent(true);
|
|
|
|
private ManualResetEventSlim _galWorkAvailable;
|
|
private CircularSpanPool _spanPool;
|
|
|
|
private ManualResetEventSlim _invokeRun;
|
|
private AutoResetEvent _interruptRun;
|
|
|
|
private bool _lastSampleCounterClear = true;
|
|
|
|
private byte[] _commandQueue;
|
|
private object[] _refQueue;
|
|
|
|
private int _consumerPtr;
|
|
private int _commandCount;
|
|
|
|
private int _producerPtr;
|
|
private int _lastProducedPtr;
|
|
private int _invokePtr;
|
|
|
|
private int _refProducerPtr;
|
|
private int _refConsumerPtr;
|
|
|
|
private Action _interruptAction;
|
|
|
|
public event EventHandler<ScreenCaptureImageInfo> ScreenCaptured;
|
|
|
|
internal BufferMap Buffers { get; }
|
|
internal SyncMap Sync { get; }
|
|
internal CircularSpanPool SpanPool { get; }
|
|
internal ProgramQueue Programs { get; }
|
|
|
|
public IPipeline Pipeline { get; }
|
|
public IWindow Window { get; }
|
|
|
|
public IRenderer BaseRenderer => _baseRenderer;
|
|
|
|
public bool PreferThreading => _baseRenderer.PreferThreading;
|
|
|
|
public ThreadedRenderer(IRenderer renderer)
|
|
{
|
|
_baseRenderer = renderer;
|
|
|
|
renderer.ScreenCaptured += (sender, info) => ScreenCaptured?.Invoke(this, info);
|
|
renderer.SetInterruptAction(Interrupt);
|
|
|
|
Pipeline = new ThreadedPipeline(this, renderer.Pipeline);
|
|
Window = new ThreadedWindow(this, renderer);
|
|
Buffers = new BufferMap();
|
|
Sync = new SyncMap();
|
|
Programs = new ProgramQueue(renderer);
|
|
|
|
_galWorkAvailable = new ManualResetEventSlim(false);
|
|
_invokeRun = new ManualResetEventSlim();
|
|
_interruptRun = new AutoResetEvent(false);
|
|
_spanPool = new CircularSpanPool(this, SpanPoolBytes);
|
|
SpanPool = _spanPool;
|
|
|
|
_elementSize = BitUtils.AlignUp(CommandHelper.GetMaxCommandSize(), 4);
|
|
|
|
_commandQueue = new byte[_elementSize * QueueCount];
|
|
_refQueue = new object[MaxRefsPerCommand * QueueCount];
|
|
}
|
|
|
|
public void RunLoop(Action gpuLoop)
|
|
{
|
|
_running = true;
|
|
|
|
_backendThread = Thread.CurrentThread;
|
|
|
|
_gpuThread = new Thread(() => {
|
|
gpuLoop();
|
|
_running = false;
|
|
_galWorkAvailable.Set();
|
|
});
|
|
|
|
_gpuThread.Name = "GPU.MainThread";
|
|
_gpuThread.Start();
|
|
|
|
RenderLoop();
|
|
}
|
|
|
|
public void RenderLoop()
|
|
{
|
|
// Power through the render queue until the Gpu thread work is done.
|
|
|
|
while (_running && !_disposed)
|
|
{
|
|
_galWorkAvailable.Wait();
|
|
_galWorkAvailable.Reset();
|
|
|
|
if (Volatile.Read(ref _interruptAction) != null)
|
|
{
|
|
_interruptAction();
|
|
_interruptRun.Set();
|
|
|
|
Interlocked.Exchange(ref _interruptAction, null);
|
|
}
|
|
|
|
// The other thread can only increase the command count.
|
|
// We can assume that if it is above 0, it will stay there or get higher.
|
|
|
|
while (_commandCount > 0 && Volatile.Read(ref _interruptAction) == null)
|
|
{
|
|
int commandPtr = _consumerPtr;
|
|
|
|
Span<byte> command = new Span<byte>(_commandQueue, commandPtr * _elementSize, _elementSize);
|
|
|
|
// Run the command.
|
|
|
|
CommandHelper.RunCommand(command, this, _baseRenderer);
|
|
|
|
if (Interlocked.CompareExchange(ref _invokePtr, -1, commandPtr) == commandPtr)
|
|
{
|
|
_invokeRun.Set();
|
|
}
|
|
|
|
_consumerPtr = (_consumerPtr + 1) % QueueCount;
|
|
|
|
Interlocked.Decrement(ref _commandCount);
|
|
}
|
|
}
|
|
}
|
|
|
|
internal SpanRef<T> CopySpan<T>(ReadOnlySpan<T> data) where T : unmanaged
|
|
{
|
|
return _spanPool.Insert(data);
|
|
}
|
|
|
|
private TableRef<T> Ref<T>(T reference)
|
|
{
|
|
return new TableRef<T>(this, reference);
|
|
}
|
|
|
|
internal ref T New<T>() where T : struct
|
|
{
|
|
while (_producerPtr == (_consumerPtr + QueueCount - 1) % QueueCount)
|
|
{
|
|
// If incrementing the producer pointer would overflow, we need to wait.
|
|
// _consumerPtr can only move forward, so there's no race to worry about here.
|
|
|
|
Thread.Sleep(1);
|
|
}
|
|
|
|
int taken = _producerPtr;
|
|
_lastProducedPtr = taken;
|
|
|
|
_producerPtr = (_producerPtr + 1) % QueueCount;
|
|
|
|
Span<byte> memory = new Span<byte>(_commandQueue, taken * _elementSize, _elementSize);
|
|
ref T result = ref Unsafe.As<byte, T>(ref MemoryMarshal.GetReference(memory));
|
|
|
|
memory[memory.Length - 1] = (byte)((IGALCommand)result).CommandType;
|
|
|
|
return ref result;
|
|
}
|
|
|
|
internal int AddTableRef(object obj)
|
|
{
|
|
// The reference table is sized so that it will never overflow, so long as the references are taken after the command is allocated.
|
|
|
|
int index = _refProducerPtr;
|
|
|
|
_refQueue[index] = obj;
|
|
|
|
_refProducerPtr = (_refProducerPtr + 1) % _refQueue.Length;
|
|
|
|
return index;
|
|
}
|
|
|
|
internal object RemoveTableRef(int index)
|
|
{
|
|
Debug.Assert(index == _refConsumerPtr);
|
|
|
|
object result = _refQueue[_refConsumerPtr];
|
|
_refQueue[_refConsumerPtr] = null;
|
|
|
|
_refConsumerPtr = (_refConsumerPtr + 1) % _refQueue.Length;
|
|
|
|
return result;
|
|
}
|
|
|
|
internal void QueueCommand()
|
|
{
|
|
int result = Interlocked.Increment(ref _commandCount);
|
|
|
|
if (result == 1)
|
|
{
|
|
_galWorkAvailable.Set();
|
|
}
|
|
}
|
|
|
|
internal void InvokeCommand()
|
|
{
|
|
_invokeRun.Reset();
|
|
_invokePtr = _lastProducedPtr;
|
|
|
|
QueueCommand();
|
|
|
|
// Wait for the command to complete.
|
|
_invokeRun.Wait();
|
|
}
|
|
|
|
internal void WaitForFrame()
|
|
{
|
|
_frameComplete.WaitOne();
|
|
}
|
|
|
|
internal void SignalFrame()
|
|
{
|
|
_frameComplete.Set();
|
|
}
|
|
|
|
internal bool IsGpuThread()
|
|
{
|
|
return Thread.CurrentThread == _gpuThread;
|
|
}
|
|
|
|
public void BackgroundContextAction(Action action, bool alwaysBackground = false)
|
|
{
|
|
if (IsGpuThread() && !alwaysBackground)
|
|
{
|
|
// The action must be performed on the render thread.
|
|
New<ActionCommand>().Set(Ref(action));
|
|
InvokeCommand();
|
|
}
|
|
else
|
|
{
|
|
_baseRenderer.BackgroundContextAction(action, true);
|
|
}
|
|
}
|
|
|
|
public BufferHandle CreateBuffer(int size)
|
|
{
|
|
BufferHandle handle = Buffers.CreateBufferHandle();
|
|
New<CreateBufferCommand>().Set(handle, size);
|
|
QueueCommand();
|
|
|
|
return handle;
|
|
}
|
|
|
|
public IProgram CreateProgram(ShaderSource[] shaders, ShaderInfo info)
|
|
{
|
|
var program = new ThreadedProgram(this);
|
|
|
|
SourceProgramRequest request = new SourceProgramRequest(program, shaders, info);
|
|
|
|
Programs.Add(request);
|
|
|
|
New<CreateProgramCommand>().Set(Ref((IProgramRequest)request));
|
|
QueueCommand();
|
|
|
|
return program;
|
|
}
|
|
|
|
public ISampler CreateSampler(SamplerCreateInfo info)
|
|
{
|
|
var sampler = new ThreadedSampler(this);
|
|
New<CreateSamplerCommand>().Set(Ref(sampler), info);
|
|
QueueCommand();
|
|
|
|
return sampler;
|
|
}
|
|
|
|
public void CreateSync(ulong id, bool strict)
|
|
{
|
|
Sync.CreateSyncHandle(id);
|
|
New<CreateSyncCommand>().Set(id, strict);
|
|
QueueCommand();
|
|
}
|
|
|
|
public ITexture CreateTexture(TextureCreateInfo info, float scale)
|
|
{
|
|
if (IsGpuThread())
|
|
{
|
|
var texture = new ThreadedTexture(this, info, scale);
|
|
New<CreateTextureCommand>().Set(Ref(texture), info, scale);
|
|
QueueCommand();
|
|
|
|
return texture;
|
|
}
|
|
else
|
|
{
|
|
var texture = new ThreadedTexture(this, info, scale);
|
|
texture.Base = _baseRenderer.CreateTexture(info, scale);
|
|
|
|
return texture;
|
|
}
|
|
}
|
|
|
|
public void DeleteBuffer(BufferHandle buffer)
|
|
{
|
|
New<BufferDisposeCommand>().Set(buffer);
|
|
QueueCommand();
|
|
}
|
|
|
|
public ReadOnlySpan<byte> GetBufferData(BufferHandle buffer, int offset, int size)
|
|
{
|
|
if (IsGpuThread())
|
|
{
|
|
ResultBox<PinnedSpan<byte>> box = new ResultBox<PinnedSpan<byte>>();
|
|
New<BufferGetDataCommand>().Set(buffer, offset, size, Ref(box));
|
|
InvokeCommand();
|
|
|
|
return box.Result.Get();
|
|
}
|
|
else
|
|
{
|
|
return _baseRenderer.GetBufferData(Buffers.MapBufferBlocking(buffer), offset, size);
|
|
}
|
|
}
|
|
|
|
public Capabilities GetCapabilities()
|
|
{
|
|
ResultBox<Capabilities> box = new ResultBox<Capabilities>();
|
|
New<GetCapabilitiesCommand>().Set(Ref(box));
|
|
InvokeCommand();
|
|
|
|
return box.Result;
|
|
}
|
|
|
|
public ulong GetCurrentSync()
|
|
{
|
|
return _baseRenderer.GetCurrentSync();
|
|
}
|
|
|
|
public HardwareInfo GetHardwareInfo()
|
|
{
|
|
return _baseRenderer.GetHardwareInfo();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initialize the base renderer. Must be called on the render thread.
|
|
/// </summary>
|
|
/// <param name="logLevel">Log level to use</param>
|
|
public void Initialize(GraphicsDebugLevel logLevel)
|
|
{
|
|
_baseRenderer.Initialize(logLevel);
|
|
}
|
|
|
|
public IProgram LoadProgramBinary(byte[] programBinary, bool hasFragmentShader, ShaderInfo info)
|
|
{
|
|
var program = new ThreadedProgram(this);
|
|
|
|
BinaryProgramRequest request = new BinaryProgramRequest(program, programBinary, hasFragmentShader, info);
|
|
Programs.Add(request);
|
|
|
|
New<CreateProgramCommand>().Set(Ref((IProgramRequest)request));
|
|
QueueCommand();
|
|
|
|
return program;
|
|
}
|
|
|
|
public void PreFrame()
|
|
{
|
|
New<PreFrameCommand>();
|
|
QueueCommand();
|
|
}
|
|
|
|
public ICounterEvent ReportCounter(CounterType type, EventHandler<ulong> resultHandler, bool hostReserved)
|
|
{
|
|
ThreadedCounterEvent evt = new ThreadedCounterEvent(this, type, _lastSampleCounterClear);
|
|
New<ReportCounterCommand>().Set(Ref(evt), type, Ref(resultHandler), hostReserved);
|
|
QueueCommand();
|
|
|
|
if (type == CounterType.SamplesPassed)
|
|
{
|
|
_lastSampleCounterClear = false;
|
|
}
|
|
|
|
return evt;
|
|
}
|
|
|
|
public void ResetCounter(CounterType type)
|
|
{
|
|
New<ResetCounterCommand>().Set(type);
|
|
QueueCommand();
|
|
_lastSampleCounterClear = true;
|
|
}
|
|
|
|
public void Screenshot()
|
|
{
|
|
_baseRenderer.Screenshot();
|
|
}
|
|
|
|
public void SetBufferData(BufferHandle buffer, int offset, ReadOnlySpan<byte> data)
|
|
{
|
|
New<BufferSetDataCommand>().Set(buffer, offset, CopySpan(data));
|
|
QueueCommand();
|
|
}
|
|
|
|
public void UpdateCounters()
|
|
{
|
|
New<UpdateCountersCommand>();
|
|
QueueCommand();
|
|
}
|
|
|
|
public void WaitSync(ulong id)
|
|
{
|
|
Sync.WaitSyncAvailability(id);
|
|
|
|
_baseRenderer.WaitSync(id);
|
|
}
|
|
|
|
private void Interrupt(Action action)
|
|
{
|
|
// Interrupt the backend thread from any external thread and invoke the given action.
|
|
|
|
if (Thread.CurrentThread == _backendThread)
|
|
{
|
|
// If this is called from the backend thread, the action can run immediately.
|
|
action();
|
|
}
|
|
else
|
|
{
|
|
while (Interlocked.CompareExchange(ref _interruptAction, action, null) != null) { }
|
|
|
|
_galWorkAvailable.Set();
|
|
|
|
_interruptRun.WaitOne();
|
|
}
|
|
}
|
|
|
|
public void SetInterruptAction(Action<Action> interruptAction)
|
|
{
|
|
// Threaded renderer ignores given interrupt action, as it provides its own to the child renderer.
|
|
}
|
|
|
|
public void Dispose()
|
|
{
|
|
// Dispose must happen from the render thread, after all commands have completed.
|
|
|
|
// Stop the GPU thread.
|
|
_disposed = true;
|
|
|
|
if (_gpuThread != null && _gpuThread.IsAlive)
|
|
{
|
|
_gpuThread.Join();
|
|
}
|
|
|
|
// Dispose the renderer.
|
|
_baseRenderer.Dispose();
|
|
|
|
// Dispose events.
|
|
_frameComplete.Dispose();
|
|
_galWorkAvailable.Dispose();
|
|
_invokeRun.Dispose();
|
|
_interruptRun.Dispose();
|
|
|
|
Sync.Dispose();
|
|
}
|
|
}
|
|
} |