0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-10 04:42:02 +00:00
Ryujinx/ARMeilleure/Translation/ArmEmitterContext.cs
FICTURE7 a9343c9364
Refactor PtcInfo (#2625)
* Refactor `PtcInfo`

This change reduces the coupling of `PtcInfo` by moving relocation
tracking to the backend. `RelocEntry`s remains as `RelocEntry`s through
out the pipeline until it actually needs to be written to the PTC
streams. Keeping this representation makes inspecting and manipulating
relocations after compilations less painful. This is something I needed
to do to patch relocations to 0 to diff dumps.

Contributes to #1125.

* Turn `Symbol` & `RelocInfo` into readonly structs

* Add documentation to `CompiledFunction`

* Remove `Compiler.Compile<T>`

Remove `Compiler.Compile<T>` and replace it by `Map<T>` of the
`CompiledFunction` returned.
2021-09-14 01:23:37 +02:00

200 lines
No EOL
6.8 KiB
C#

using ARMeilleure.CodeGen.Linking;
using ARMeilleure.Common;
using ARMeilleure.Decoders;
using ARMeilleure.Diagnostics;
using ARMeilleure.Instructions;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Memory;
using ARMeilleure.State;
using ARMeilleure.Translation.PTC;
using System;
using System.Collections.Generic;
using System.Reflection;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;
namespace ARMeilleure.Translation
{
class ArmEmitterContext : EmitterContext
{
private readonly Dictionary<ulong, Operand> _labels;
private OpCode _optOpLastCompare;
private OpCode _optOpLastFlagSet;
private Operand _optCmpTempN;
private Operand _optCmpTempM;
private Block _currBlock;
public Block CurrBlock
{
get
{
return _currBlock;
}
set
{
_currBlock = value;
ResetBlockState();
}
}
public OpCode CurrOp { get; set; }
public IMemoryManager Memory { get; }
public bool HasPtc { get; }
public EntryTable<uint> CountTable { get; }
public AddressTable<ulong> FunctionTable { get; }
public TranslatorStubs Stubs { get; }
public ulong EntryAddress { get; }
public bool HighCq { get; }
public Aarch32Mode Mode { get; }
public ArmEmitterContext(
IMemoryManager memory,
EntryTable<uint> countTable,
AddressTable<ulong> funcTable,
TranslatorStubs stubs,
ulong entryAddress,
bool highCq,
Aarch32Mode mode)
{
HasPtc = Ptc.State != PtcState.Disabled;
Memory = memory;
CountTable = countTable;
FunctionTable = funcTable;
Stubs = stubs;
EntryAddress = entryAddress;
HighCq = highCq;
Mode = mode;
_labels = new Dictionary<ulong, Operand>();
}
public override Operand Call(MethodInfo info, params Operand[] callArgs)
{
if (!HasPtc)
{
return base.Call(info, callArgs);
}
else
{
int index = Delegates.GetDelegateIndex(info);
IntPtr funcPtr = Delegates.GetDelegateFuncPtrByIndex(index);
OperandType returnType = GetOperandType(info.ReturnType);
Symbol symbol = new Symbol(SymbolType.DelegateTable, (ulong)index);
Symbols.Add((ulong)funcPtr.ToInt64(), info.Name);
return Call(Const(funcPtr.ToInt64(), symbol), returnType, callArgs);
}
}
public Operand GetLabel(ulong address)
{
if (!_labels.TryGetValue(address, out Operand label))
{
label = Label();
_labels.Add(address, label);
}
return label;
}
public void MarkComparison(Operand n, Operand m)
{
_optOpLastCompare = CurrOp;
_optCmpTempN = Copy(n);
_optCmpTempM = Copy(m);
}
public void MarkFlagSet(PState stateFlag)
{
// Set this only if any of the NZCV flag bits were modified.
// This is used to ensure that when emiting a direct IL branch
// instruction for compare + branch sequences, we're not expecting
// to use comparison values from an old instruction, when in fact
// the flags were already overwritten by another instruction further along.
if (stateFlag >= PState.VFlag)
{
_optOpLastFlagSet = CurrOp;
}
}
private void ResetBlockState()
{
_optOpLastCompare = null;
_optOpLastFlagSet = null;
}
public Operand TryGetComparisonResult(Condition condition)
{
if (_optOpLastCompare == null || _optOpLastCompare != _optOpLastFlagSet)
{
return default;
}
Operand n = _optCmpTempN;
Operand m = _optCmpTempM;
InstName cmpName = _optOpLastCompare.Instruction.Name;
if (cmpName == InstName.Subs)
{
switch (condition)
{
case Condition.Eq: return ICompareEqual (n, m);
case Condition.Ne: return ICompareNotEqual (n, m);
case Condition.GeUn: return ICompareGreaterOrEqualUI(n, m);
case Condition.LtUn: return ICompareLessUI (n, m);
case Condition.GtUn: return ICompareGreaterUI (n, m);
case Condition.LeUn: return ICompareLessOrEqualUI (n, m);
case Condition.Ge: return ICompareGreaterOrEqual (n, m);
case Condition.Lt: return ICompareLess (n, m);
case Condition.Gt: return ICompareGreater (n, m);
case Condition.Le: return ICompareLessOrEqual (n, m);
}
}
else if (cmpName == InstName.Adds && _optOpLastCompare is IOpCodeAluImm op)
{
// There are several limitations that needs to be taken into account for CMN comparisons:
// - The unsigned comparisons are not valid, as they depend on the
// carry flag value, and they will have different values for addition and
// subtraction. For addition, it's carry, and for subtraction, it's borrow.
// So, we need to make sure we're not doing a unsigned compare for the CMN case.
// - We can only do the optimization for the immediate variants,
// because when the second operand value is exactly INT_MIN, we can't
// negate the value as theres no positive counterpart.
// Such invalid values can't be encoded on the immediate encodings.
if (op.RegisterSize == RegisterSize.Int32)
{
m = Const((int)-op.Immediate);
}
else
{
m = Const(-op.Immediate);
}
switch (condition)
{
case Condition.Eq: return ICompareEqual (n, m);
case Condition.Ne: return ICompareNotEqual (n, m);
case Condition.Ge: return ICompareGreaterOrEqual(n, m);
case Condition.Lt: return ICompareLess (n, m);
case Condition.Gt: return ICompareGreater (n, m);
case Condition.Le: return ICompareLessOrEqual (n, m);
}
}
return default;
}
}
}