0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-11 05:12:00 +00:00
Ryujinx/src/ARMeilleure/Translation/Translator.cs
LotP1 68525ab7f1 JIT Sparse Function Table (#250)
More up to date build of the JIT Sparse PR for continued development.
JIT Sparse Function Table was originally developed by riperiperi for the
original Ryujinx project, and decreased the amount of layers in the
Function Table structure, to decrease lookup times at the cost of
slightly higher RAM usage.
This PR rebalances the JIT Sparse Function Table to be a bit more RAM
intensive, but faster in workloads where the JIT Function Table is a
bottleneck. Faster RAM will see a bigger impact and slower RAM (DDR3 and
potentially slow DDR4) will see a slight performance decrease.
This PR also implements a base for a PPTC profile system that could
allow for PPTC with ExeFS mods enabled in the future.
This PR also potentially fixes a strange issue where Avalonia would time
out in some rare instances, e.g. when running ExeFS mods with TotK and a
strange controller configuration.

---------

Co-authored-by: Evan Husted <gr33m11@gmail.com>
2024-12-19 00:26:45 -06:00

562 lines
19 KiB
C#

using ARMeilleure.CodeGen;
using ARMeilleure.Common;
using ARMeilleure.Decoders;
using ARMeilleure.Diagnostics;
using ARMeilleure.Instructions;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Memory;
using ARMeilleure.Signal;
using ARMeilleure.State;
using ARMeilleure.Translation.Cache;
using ARMeilleure.Translation.PTC;
using Ryujinx.Common;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;
using static ARMeilleure.IntermediateRepresentation.Operand.Factory;
namespace ARMeilleure.Translation
{
public class Translator
{
private readonly IJitMemoryAllocator _allocator;
private readonly ConcurrentQueue<KeyValuePair<ulong, TranslatedFunction>> _oldFuncs;
private readonly Ptc _ptc;
internal TranslatorCache<TranslatedFunction> Functions { get; }
internal IAddressTable<ulong> FunctionTable { get; }
internal EntryTable<uint> CountTable { get; }
internal TranslatorStubs Stubs { get; }
internal TranslatorQueue Queue { get; }
internal IMemoryManager Memory { get; }
private Thread[] _backgroundTranslationThreads;
private volatile int _threadCount;
public Translator(IJitMemoryAllocator allocator, IMemoryManager memory, IAddressTable<ulong> functionTable)
{
_allocator = allocator;
Memory = memory;
_oldFuncs = new ConcurrentQueue<KeyValuePair<ulong, TranslatedFunction>>();
_ptc = new Ptc();
Queue = new TranslatorQueue();
JitCache.Initialize(allocator);
CountTable = new EntryTable<uint>();
Functions = new TranslatorCache<TranslatedFunction>();
FunctionTable = functionTable;
Stubs = new TranslatorStubs(FunctionTable);
FunctionTable.Fill = (ulong)Stubs.SlowDispatchStub;
}
public IPtcLoadState LoadDiskCache(string titleIdText, string displayVersion, bool enabled, string cacheSelector)
{
_ptc.Initialize(titleIdText, displayVersion, enabled, Memory.Type, cacheSelector);
return _ptc;
}
public void PrepareCodeRange(ulong address, ulong size)
{
if (_ptc.Profiler.StaticCodeSize == 0)
{
_ptc.Profiler.StaticCodeStart = address;
_ptc.Profiler.StaticCodeSize = size;
}
}
public void Execute(State.ExecutionContext context, ulong address)
{
if (Interlocked.Increment(ref _threadCount) == 1)
{
if (_ptc.State == PtcState.Enabled)
{
Debug.Assert(Functions.Count == 0);
_ptc.LoadTranslations(this);
_ptc.MakeAndSaveTranslations(this);
}
_ptc.Profiler.Start();
_ptc.Disable();
// Simple heuristic, should be user configurable in future. (1 for 4 core/ht or less, 2 for 6 core + ht
// etc). All threads are normal priority except from the last, which just fills as much of the last core
// as the os lets it with a low priority. If we only have one rejit thread, it should be normal priority
// as highCq code is performance critical.
//
// TODO: Use physical cores rather than logical. This only really makes sense for processors with
// hyperthreading. Requires OS specific code.
int unboundedThreadCount = Math.Max(1, (Environment.ProcessorCount - 6) / 3);
int threadCount = Math.Min(4, unboundedThreadCount);
Thread[] backgroundTranslationThreads = new Thread[threadCount];
for (int i = 0; i < threadCount; i++)
{
bool last = i != 0 && i == unboundedThreadCount - 1;
backgroundTranslationThreads[i] = new(BackgroundTranslate)
{
Name = "CPU.BackgroundTranslatorThread." + i,
Priority = last ? ThreadPriority.Lowest : ThreadPriority.Normal,
};
backgroundTranslationThreads[i].Start();
}
Interlocked.Exchange(ref _backgroundTranslationThreads, backgroundTranslationThreads);
}
Statistics.InitializeTimer();
NativeInterface.RegisterThread(context, Memory, this);
if (Optimizations.UseUnmanagedDispatchLoop)
{
Stubs.DispatchLoop(context.NativeContextPtr, address);
}
else
{
do
{
address = ExecuteSingle(context, address);
}
while (context.Running && address != 0);
}
NativeInterface.UnregisterThread();
if (Interlocked.Decrement(ref _threadCount) == 0)
{
Queue.Dispose();
Thread[] backgroundTranslationThreads = Interlocked.Exchange(ref _backgroundTranslationThreads, null);
if (backgroundTranslationThreads != null)
{
foreach (Thread thread in backgroundTranslationThreads)
{
thread.Join();
}
}
ClearJitCache();
Stubs.Dispose();
FunctionTable.Dispose();
CountTable.Dispose();
_ptc.Close();
_ptc.Profiler.Stop();
_ptc.Dispose();
_ptc.Profiler.Dispose();
}
}
private ulong ExecuteSingle(State.ExecutionContext context, ulong address)
{
TranslatedFunction func = GetOrTranslate(address, context.ExecutionMode);
Statistics.StartTimer();
ulong nextAddr = func.Execute(Stubs.ContextWrapper, context);
Statistics.StopTimer(address);
return nextAddr;
}
public ulong Step(State.ExecutionContext context, ulong address)
{
TranslatedFunction func = Translate(address, context.ExecutionMode, highCq: false, singleStep: true);
address = func.Execute(Stubs.ContextWrapper, context);
EnqueueForDeletion(address, func);
return address;
}
internal TranslatedFunction GetOrTranslate(ulong address, ExecutionMode mode)
{
if (!Functions.TryGetValue(address, out TranslatedFunction func))
{
func = Translate(address, mode, highCq: false);
TranslatedFunction oldFunc = Functions.GetOrAdd(address, func.GuestSize, func);
if (oldFunc != func)
{
JitCache.Unmap(func.FuncPointer);
func = oldFunc;
}
if (_ptc.Profiler.Enabled)
{
_ptc.Profiler.AddEntry(address, mode, highCq: false);
}
RegisterFunction(address, func);
}
return func;
}
internal void RegisterFunction(ulong guestAddress, TranslatedFunction func)
{
if (FunctionTable.IsValid(guestAddress) && (Optimizations.AllowLcqInFunctionTable || func.HighCq))
{
Volatile.Write(ref FunctionTable.GetValue(guestAddress), (ulong)func.FuncPointer);
}
}
internal TranslatedFunction Translate(ulong address, ExecutionMode mode, bool highCq, bool singleStep = false)
{
var context = new ArmEmitterContext(
Memory,
CountTable,
FunctionTable,
Stubs,
address,
highCq,
_ptc.State != PtcState.Disabled,
mode: Aarch32Mode.User);
Logger.StartPass(PassName.Decoding);
Block[] blocks = Decoder.Decode(Memory, address, mode, highCq, singleStep ? DecoderMode.SingleInstruction : DecoderMode.MultipleBlocks);
Logger.EndPass(PassName.Decoding);
Logger.StartPass(PassName.Translation);
EmitSynchronization(context);
if (blocks[0].Address != address)
{
context.Branch(context.GetLabel(address));
}
ControlFlowGraph cfg = EmitAndGetCFG(context, blocks, out Range funcRange, out Counter<uint> counter);
ulong funcSize = funcRange.End - funcRange.Start;
Logger.EndPass(PassName.Translation, cfg);
Logger.StartPass(PassName.RegisterUsage);
RegisterUsage.RunPass(cfg, mode);
Logger.EndPass(PassName.RegisterUsage);
var retType = OperandType.I64;
var argTypes = new OperandType[] { OperandType.I64 };
var options = highCq ? CompilerOptions.HighCq : CompilerOptions.None;
if (context.HasPtc && !singleStep)
{
options |= CompilerOptions.Relocatable;
}
CompiledFunction compiledFunc = Compiler.Compile(cfg, argTypes, retType, options, RuntimeInformation.ProcessArchitecture);
if (context.HasPtc && !singleStep)
{
Hash128 hash = Ptc.ComputeHash(Memory, address, funcSize);
_ptc.WriteCompiledFunction(address, funcSize, hash, highCq, compiledFunc);
}
GuestFunction func = compiledFunc.MapWithPointer<GuestFunction>(out nint funcPointer);
Allocators.ResetAll();
return new TranslatedFunction(func, funcPointer, counter, funcSize, highCq);
}
private void BackgroundTranslate()
{
while (_threadCount != 0 && Queue.TryDequeue(out RejitRequest request))
{
TranslatedFunction func = Translate(request.Address, request.Mode, highCq: true);
Functions.AddOrUpdate(request.Address, func.GuestSize, func, (key, oldFunc) =>
{
EnqueueForDeletion(key, oldFunc);
return func;
});
if (_ptc.Profiler.Enabled)
{
_ptc.Profiler.UpdateEntry(request.Address, request.Mode, highCq: true);
}
RegisterFunction(request.Address, func);
}
}
private readonly struct Range
{
public ulong Start { get; }
public ulong End { get; }
public Range(ulong start, ulong end)
{
Start = start;
End = end;
}
}
private static ControlFlowGraph EmitAndGetCFG(
ArmEmitterContext context,
Block[] blocks,
out Range range,
out Counter<uint> counter)
{
counter = null;
ulong rangeStart = ulong.MaxValue;
ulong rangeEnd = 0;
for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
{
Block block = blocks[blkIndex];
if (!block.Exit)
{
if (rangeStart > block.Address)
{
rangeStart = block.Address;
}
if (rangeEnd < block.EndAddress)
{
rangeEnd = block.EndAddress;
}
}
if (block.Address == context.EntryAddress)
{
if (!context.HighCq)
{
EmitRejitCheck(context, out counter);
}
context.ClearQcFlag();
}
context.CurrBlock = block;
context.MarkLabel(context.GetLabel(block.Address));
if (block.Exit)
{
// Left option here as it may be useful if we need to return to managed rather than tail call in
// future. (eg. for debug)
bool useReturns = false;
InstEmitFlowHelper.EmitVirtualJump(context, Const(block.Address), isReturn: useReturns);
}
else
{
for (int opcIndex = 0; opcIndex < block.OpCodes.Count; opcIndex++)
{
OpCode opCode = block.OpCodes[opcIndex];
context.CurrOp = opCode;
bool isLastOp = opcIndex == block.OpCodes.Count - 1;
if (isLastOp)
{
context.SyncQcFlag();
if (block.Branch != null && !block.Branch.Exit && block.Branch.Address <= block.Address)
{
EmitSynchronization(context);
}
}
Operand lblPredicateSkip = default;
if (context.IsInIfThenBlock && context.CurrentIfThenBlockCond != Condition.Al)
{
lblPredicateSkip = Label();
InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, context.CurrentIfThenBlockCond.Invert());
}
if (opCode is OpCode32 op && op.Cond < Condition.Al)
{
lblPredicateSkip = Label();
InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, op.Cond.Invert());
}
if (opCode.Instruction.Emitter != null)
{
opCode.Instruction.Emitter(context);
}
else
{
throw new InvalidOperationException($"Invalid instruction \"{opCode.Instruction.Name}\".");
}
if (lblPredicateSkip != default)
{
context.MarkLabel(lblPredicateSkip);
}
if (context.IsInIfThenBlock && opCode.Instruction.Name != InstName.It)
{
context.AdvanceIfThenBlockState();
}
}
}
}
range = new Range(rangeStart, rangeEnd);
return context.GetControlFlowGraph();
}
internal static void EmitRejitCheck(ArmEmitterContext context, out Counter<uint> counter)
{
const int MinsCallForRejit = 100;
counter = new Counter<uint>(context.CountTable);
Operand lblEnd = Label();
Operand address = !context.HasPtc ?
Const(ref counter.Value) :
Const(ref counter.Value, Ptc.CountTableSymbol);
Operand curCount = context.Load(OperandType.I32, address);
Operand count = context.Add(curCount, Const(1));
context.Store(address, count);
context.BranchIf(lblEnd, curCount, Const(MinsCallForRejit), Comparison.NotEqual, BasicBlockFrequency.Cold);
context.Call(typeof(NativeInterface).GetMethod(nameof(NativeInterface.EnqueueForRejit)), Const(context.EntryAddress));
context.MarkLabel(lblEnd);
}
internal static void EmitSynchronization(EmitterContext context)
{
long countOffs = NativeContext.GetCounterOffset();
Operand lblNonZero = Label();
Operand lblExit = Label();
Operand countAddr = context.Add(context.LoadArgument(OperandType.I64, 0), Const(countOffs));
Operand count = context.Load(OperandType.I32, countAddr);
context.BranchIfTrue(lblNonZero, count, BasicBlockFrequency.Cold);
Operand running = context.Call(typeof(NativeInterface).GetMethod(nameof(NativeInterface.CheckSynchronization)));
context.BranchIfTrue(lblExit, running, BasicBlockFrequency.Cold);
context.Return(Const(0L));
context.MarkLabel(lblNonZero);
count = context.Subtract(count, Const(1));
context.Store(countAddr, count);
context.MarkLabel(lblExit);
}
public void InvalidateJitCacheRegion(ulong address, ulong size)
{
ulong[] overlapAddresses = Array.Empty<ulong>();
int overlapsCount = Functions.GetOverlaps(address, size, ref overlapAddresses);
if (overlapsCount != 0)
{
// If rejit is running, stop it as it may be trying to rejit a function on the invalidated region.
ClearRejitQueue(allowRequeue: true);
}
for (int index = 0; index < overlapsCount; index++)
{
ulong overlapAddress = overlapAddresses[index];
if (Functions.TryGetValue(overlapAddress, out TranslatedFunction overlap))
{
Functions.Remove(overlapAddress);
Volatile.Write(ref FunctionTable.GetValue(overlapAddress), FunctionTable.Fill);
EnqueueForDeletion(overlapAddress, overlap);
}
}
// TODO: Remove overlapping functions from the JitCache aswell.
// This should be done safely, with a mechanism to ensure the function is not being executed.
}
internal void EnqueueForRejit(ulong guestAddress, ExecutionMode mode)
{
Queue.Enqueue(guestAddress, mode);
}
private void EnqueueForDeletion(ulong guestAddress, TranslatedFunction func)
{
_oldFuncs.Enqueue(new(guestAddress, func));
}
private void ClearJitCache()
{
// Ensure no attempt will be made to compile new functions due to rejit.
ClearRejitQueue(allowRequeue: false);
List<TranslatedFunction> functions = Functions.AsList();
foreach (var func in functions)
{
JitCache.Unmap(func.FuncPointer);
func.CallCounter?.Dispose();
}
Functions.Clear();
while (_oldFuncs.TryDequeue(out var kv))
{
JitCache.Unmap(kv.Value.FuncPointer);
kv.Value.CallCounter?.Dispose();
}
}
private void ClearRejitQueue(bool allowRequeue)
{
if (!allowRequeue)
{
Queue.Clear();
return;
}
lock (Queue.Sync)
{
while (Queue.Count > 0 && Queue.TryDequeue(out RejitRequest request))
{
if (Functions.TryGetValue(request.Address, out var func) && func.CallCounter != null)
{
Volatile.Write(ref func.CallCounter.Value, 0);
}
}
}
}
}
}