0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2024-12-23 09:15:46 +00:00
Ryujinx/Ryujinx.Tests/Cpu/CpuTestSimdImm.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

398 lines
12 KiB
C#

#define SimdImm
using ARMeilleure.State;
using NUnit.Framework;
using System.Collections.Generic;
namespace Ryujinx.Tests.Cpu
{
[Category("SimdImm")]
public sealed class CpuTestSimdImm : CpuTest
{
#if SimdImm
#region "Helper methods"
// abcdefgh -> aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh
private static ulong ExpandImm8(byte imm8)
{
ulong imm64 = 0ul;
for (int i = 0, j = 0; i < 8; i++, j += 8)
{
if (((imm8 >> i) & 0b1) != 0)
{
imm64 |= 0b11111111ul << j;
}
}
return imm64;
}
// aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh -> abcdefgh
private static byte ShrinkImm64(ulong imm64)
{
byte imm8 = 0;
for (int i = 0, j = 0; i < 8; i++, j += 8)
{
if (((imm64 >> j) & 0b11111111ul) != 0ul) // Note: no format check.
{
imm8 |= (byte)(0b1 << i);
}
}
return imm8;
}
#endregion
#region "ValueSource (Types)"
private static ulong[] _2S_()
{
return new ulong[] { 0x0000000000000000ul, 0x7FFFFFFF7FFFFFFFul,
0x8000000080000000ul, 0xFFFFFFFFFFFFFFFFul };
}
private static ulong[] _4H_()
{
return new ulong[] { 0x0000000000000000ul, 0x7FFF7FFF7FFF7FFFul,
0x8000800080008000ul, 0xFFFFFFFFFFFFFFFFul };
}
private static IEnumerable<byte> _8BIT_IMM_()
{
yield return 0x00;
yield return 0x7F;
yield return 0x80;
yield return 0xFF;
for (int cnt = 1; cnt <= RndCntImm8; cnt++)
{
byte imm8 = TestContext.CurrentContext.Random.NextByte();
yield return imm8;
}
}
private static IEnumerable<ulong> _64BIT_IMM_()
{
yield return ExpandImm8(0x00);
yield return ExpandImm8(0x7F);
yield return ExpandImm8(0x80);
yield return ExpandImm8(0xFF);
for (int cnt = 1; cnt <= RndCntImm64; cnt++)
{
byte imm8 = TestContext.CurrentContext.Random.NextByte();
yield return ExpandImm8(imm8);
}
}
#endregion
#region "ValueSource (Opcodes)"
private static uint[] _Bic_Orr_Vi_16bit_()
{
return new uint[]
{
0x2F009400u, // BIC V0.4H, #0
0x0F009400u // ORR V0.4H, #0
};
}
private static uint[] _Bic_Orr_Vi_32bit_()
{
return new uint[]
{
0x2F001400u, // BIC V0.2S, #0
0x0F001400u // ORR V0.2S, #0
};
}
private static uint[] _F_Mov_Vi_2S_()
{
return new uint[]
{
0x0F00F400u // FMOV V0.2S, #2.0
};
}
private static uint[] _F_Mov_Vi_4S_()
{
return new uint[]
{
0x4F00F400u // FMOV V0.4S, #2.0
};
}
private static uint[] _F_Mov_Vi_2D_()
{
return new uint[]
{
0x6F00F400u // FMOV V0.2D, #2.0
};
}
private static uint[] _Movi_V_8bit_()
{
return new uint[]
{
0x0F00E400u // MOVI V0.8B, #0
};
}
private static uint[] _Movi_Mvni_V_16bit_shifted_imm_()
{
return new uint[]
{
0x0F008400u, // MOVI V0.4H, #0
0x2F008400u // MVNI V0.4H, #0
};
}
private static uint[] _Movi_Mvni_V_32bit_shifted_imm_()
{
return new uint[]
{
0x0F000400u, // MOVI V0.2S, #0
0x2F000400u // MVNI V0.2S, #0
};
}
private static uint[] _Movi_Mvni_V_32bit_shifting_ones_()
{
return new uint[]
{
0x0F00C400u, // MOVI V0.2S, #0, MSL #8
0x2F00C400u // MVNI V0.2S, #0, MSL #8
};
}
private static uint[] _Movi_V_64bit_scalar_()
{
return new uint[]
{
0x2F00E400u // MOVI D0, #0
};
}
private static uint[] _Movi_V_64bit_vector_()
{
return new uint[]
{
0x6F00E400u // MOVI V0.2D, #0
};
}
#endregion
private const int RndCnt = 2;
private const int RndCntImm8 = 2;
private const int RndCntImm64 = 2;
[Test, Pairwise]
public void Bic_Orr_Vi_16bit([ValueSource("_Bic_Orr_Vi_16bit_")] uint opcodes,
[ValueSource("_4H_")] [Random(RndCnt)] ulong z,
[ValueSource("_8BIT_IMM_")] byte imm8,
[Values(0b0u, 0b1u)] uint amount, // <0, 8>
[Values(0b0u, 0b1u)] uint q) // <4H, 8H>
{
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
opcodes |= ((amount & 1) << 13);
opcodes |= ((q & 1) << 30);
V128 v0 = MakeVectorE0E1(z, z);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Bic_Orr_Vi_32bit([ValueSource("_Bic_Orr_Vi_32bit_")] uint opcodes,
[ValueSource("_2S_")] [Random(RndCnt)] ulong z,
[ValueSource("_8BIT_IMM_")] byte imm8,
[Values(0b00u, 0b01u, 0b10u, 0b11u)] uint amount, // <0, 8, 16, 24>
[Values(0b0u, 0b1u)] uint q) // <2S, 4S>
{
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
opcodes |= ((amount & 3) << 13);
opcodes |= ((q & 1) << 30);
V128 v0 = MakeVectorE0E1(z, z);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise] [Explicit]
public void F_Mov_Vi_2S([ValueSource("_F_Mov_Vi_2S_")] uint opcodes,
[Range(0u, 255u, 1u)] uint abcdefgh)
{
uint abc = (abcdefgh & 0xE0u) >> 5;
uint defgh = (abcdefgh & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(z);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise] [Explicit]
public void F_Mov_Vi_4S([ValueSource("_F_Mov_Vi_4S_")] uint opcodes,
[Range(0u, 255u, 1u)] uint abcdefgh)
{
uint abc = (abcdefgh & 0xE0u) >> 5;
uint defgh = (abcdefgh & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
SingleOpcode(opcodes);
CompareAgainstUnicorn();
}
[Test, Pairwise] [Explicit]
public void F_Mov_Vi_2D([ValueSource("_F_Mov_Vi_2D_")] uint opcodes,
[Range(0u, 255u, 1u)] uint abcdefgh)
{
uint abc = (abcdefgh & 0xE0u) >> 5;
uint defgh = (abcdefgh & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
SingleOpcode(opcodes);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Movi_V_8bit([ValueSource("_Movi_V_8bit_")] uint opcodes,
[ValueSource("_8BIT_IMM_")] byte imm8,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(q == 0u ? z : 0ul);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Movi_Mvni_V_16bit_shifted_imm([ValueSource("_Movi_Mvni_V_16bit_shifted_imm_")] uint opcodes,
[ValueSource("_8BIT_IMM_")] byte imm8,
[Values(0b0u, 0b1u)] uint amount, // <0, 8>
[Values(0b0u, 0b1u)] uint q) // <4H, 8H>
{
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
opcodes |= ((amount & 1) << 13);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(q == 0u ? z : 0ul);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Movi_Mvni_V_32bit_shifted_imm([ValueSource("_Movi_Mvni_V_32bit_shifted_imm_")] uint opcodes,
[ValueSource("_8BIT_IMM_")] byte imm8,
[Values(0b00u, 0b01u, 0b10u, 0b11u)] uint amount, // <0, 8, 16, 24>
[Values(0b0u, 0b1u)] uint q) // <2S, 4S>
{
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
opcodes |= ((amount & 3) << 13);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(q == 0u ? z : 0ul);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Movi_Mvni_V_32bit_shifting_ones([ValueSource("_Movi_Mvni_V_32bit_shifting_ones_")] uint opcodes,
[ValueSource("_8BIT_IMM_")] byte imm8,
[Values(0b0u, 0b1u)] uint amount, // <8, 16>
[Values(0b0u, 0b1u)] uint q) // <2S, 4S>
{
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
opcodes |= ((amount & 1) << 12);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(q == 0u ? z : 0ul);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Movi_V_64bit_scalar([ValueSource("_Movi_V_64bit_scalar_")] uint opcodes,
[ValueSource("_64BIT_IMM_")] ulong imm)
{
byte imm8 = ShrinkImm64(imm);
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(z);
SingleOpcode(opcodes, v0: v0);
CompareAgainstUnicorn();
}
[Test, Pairwise]
public void Movi_V_64bit_vector([ValueSource("_Movi_V_64bit_vector_")] uint opcodes,
[ValueSource("_64BIT_IMM_")] ulong imm)
{
byte imm8 = ShrinkImm64(imm);
uint abc = (imm8 & 0xE0u) >> 5;
uint defgh = (imm8 & 0x1Fu);
opcodes |= (abc << 16) | (defgh << 5);
SingleOpcode(opcodes);
CompareAgainstUnicorn();
}
#endif
}
}