0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-10 12:51:59 +00:00
Ryujinx/Ryujinx.HLE/HOS/Services/SurfaceFlinger/BufferQueueCore.cs
gdkchan 0c87bf9ea4
Refactor CPU interface to allow the implementation of other CPU emulators (#3362)
* Refactor CPU interface

* Use IExecutionContext interface on SVC handler, change how CPU interrupts invokes the handlers

* Make CpuEngine take a ITickSource rather than returning one

The previous implementation had the scenario where the CPU engine had to implement the tick source in mind, like for example, when we have a hypervisor and the game can read CNTPCT on the host directly. However given that we need to do conversion due to different frequencies anyway, it's not worth it. It's better to just let the user pass the tick source and redirect any reads to CNTPCT to the user tick source

* XML docs for the public interfaces

* PPTC invalidation due to NativeInterface function name changes

* Fix build of the CPU tests

* PR feedback
2022-05-31 16:29:35 -03:00

341 lines
9.9 KiB
C#

using Ryujinx.Common.Logging;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.HLE.HOS.Services.SurfaceFlinger.Types;
using System;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.HLE.HOS.Services.SurfaceFlinger
{
class BufferQueueCore
{
public BufferSlotArray Slots;
public int OverrideMaxBufferCount;
public bool UseAsyncBuffer;
public bool DequeueBufferCannotBlock;
public PixelFormat DefaultBufferFormat;
public int DefaultWidth;
public int DefaultHeight;
public int DefaultMaxBufferCount;
public int MaxAcquiredBufferCount;
public bool BufferHasBeenQueued;
public ulong FrameCounter;
public NativeWindowTransform TransformHint;
public bool IsAbandoned;
public NativeWindowApi ConnectedApi;
public bool IsAllocating;
public IProducerListener ProducerListener;
public IConsumerListener ConsumerListener;
public bool ConsumerControlledByApp;
public uint ConsumerUsageBits;
public List<BufferItem> Queue;
public BufferInfo[] BufferHistory;
public uint BufferHistoryPosition;
public bool EnableExternalEvent;
public int MaxBufferCountCached;
public readonly object Lock = new object();
private KEvent _waitBufferFreeEvent;
private KEvent _frameAvailableEvent;
public ulong Owner { get; }
public bool Active { get; private set; }
public const int BufferHistoryArraySize = 8;
public event Action BufferQueued;
public BufferQueueCore(Switch device, ulong pid)
{
Slots = new BufferSlotArray();
IsAbandoned = false;
OverrideMaxBufferCount = 0;
DequeueBufferCannotBlock = false;
UseAsyncBuffer = false;
DefaultWidth = 1;
DefaultHeight = 1;
DefaultMaxBufferCount = 2;
MaxAcquiredBufferCount = 1;
FrameCounter = 0;
TransformHint = 0;
DefaultBufferFormat = PixelFormat.Rgba8888;
IsAllocating = false;
ProducerListener = null;
ConsumerListener = null;
ConsumerUsageBits = 0;
Queue = new List<BufferItem>();
// TODO: CreateGraphicBufferAlloc?
_waitBufferFreeEvent = new KEvent(device.System.KernelContext);
_frameAvailableEvent = new KEvent(device.System.KernelContext);
Owner = pid;
Active = true;
BufferHistory = new BufferInfo[BufferHistoryArraySize];
EnableExternalEvent = true;
MaxBufferCountCached = 0;
}
public int GetMinUndequeuedBufferCountLocked(bool async)
{
if (!UseAsyncBuffer)
{
return 0;
}
if (DequeueBufferCannotBlock || async)
{
return MaxAcquiredBufferCount + 1;
}
return MaxAcquiredBufferCount;
}
public int GetMinMaxBufferCountLocked(bool async)
{
return GetMinUndequeuedBufferCountLocked(async);
}
public void UpdateMaxBufferCountCachedLocked(int slot)
{
if (MaxBufferCountCached <= slot)
{
MaxBufferCountCached = slot + 1;
}
}
public int GetMaxBufferCountLocked(bool async)
{
int minMaxBufferCount = GetMinMaxBufferCountLocked(async);
int maxBufferCount = Math.Max(DefaultMaxBufferCount, minMaxBufferCount);
if (OverrideMaxBufferCount != 0)
{
return OverrideMaxBufferCount;
}
// Preserve all buffers already in control of the producer and the consumer.
for (int slot = maxBufferCount; slot < Slots.Length; slot++)
{
BufferState state = Slots[slot].BufferState;
if (state == BufferState.Queued || state == BufferState.Dequeued)
{
maxBufferCount = slot + 1;
}
}
return maxBufferCount;
}
public Status SetDefaultMaxBufferCountLocked(int count)
{
int minBufferCount = UseAsyncBuffer ? 2 : 1;
if (count < minBufferCount || count > Slots.Length)
{
return Status.BadValue;
}
DefaultMaxBufferCount = count;
SignalDequeueEvent();
return Status.Success;
}
public void SignalWaitBufferFreeEvent()
{
if (EnableExternalEvent)
{
_waitBufferFreeEvent.WritableEvent.Signal();
}
}
public void SignalFrameAvailableEvent()
{
if (EnableExternalEvent)
{
_frameAvailableEvent.WritableEvent.Signal();
}
}
public void PrepareForExit()
{
lock (Lock)
{
Active = false;
Monitor.PulseAll(Lock);
}
}
// TODO: Find an accurate way to handle a regular condvar here as this will wake up unwanted threads in some edge cases.
public void SignalDequeueEvent()
{
Monitor.PulseAll(Lock);
}
public void WaitDequeueEvent()
{
WaitForLock();
}
public void SignalIsAllocatingEvent()
{
Monitor.PulseAll(Lock);
}
public void WaitIsAllocatingEvent()
{
WaitForLock();
}
public void SignalQueueEvent()
{
BufferQueued?.Invoke();
}
private void WaitForLock()
{
if (Active)
{
Monitor.Wait(Lock);
}
}
public void FreeBufferLocked(int slot)
{
Slots[slot].GraphicBuffer.Reset();
if (Slots[slot].BufferState == BufferState.Acquired)
{
Slots[slot].NeedsCleanupOnRelease = true;
}
Slots[slot].BufferState = BufferState.Free;
Slots[slot].FrameNumber = uint.MaxValue;
Slots[slot].AcquireCalled = false;
Slots[slot].Fence.FenceCount = 0;
}
public void FreeAllBuffersLocked()
{
BufferHasBeenQueued = false;
for (int slot = 0; slot < Slots.Length; slot++)
{
FreeBufferLocked(slot);
}
}
public bool StillTracking(ref BufferItem item)
{
BufferSlot slot = Slots[item.Slot];
// TODO: Check this. On Android, this checks the "handle". I assume NvMapHandle is the handle, but it might not be.
return !slot.GraphicBuffer.IsNull && slot.GraphicBuffer.Object.Buffer.Surfaces[0].NvMapHandle == item.GraphicBuffer.Object.Buffer.Surfaces[0].NvMapHandle;
}
public void WaitWhileAllocatingLocked()
{
while (IsAllocating)
{
WaitIsAllocatingEvent();
}
}
public void CheckSystemEventsLocked(int maxBufferCount)
{
if (!EnableExternalEvent)
{
return;
}
bool needBufferReleaseSignal = false;
bool needFrameAvailableSignal = false;
if (maxBufferCount > 1)
{
for (int i = 0; i < maxBufferCount; i++)
{
if (Slots[i].BufferState == BufferState.Queued)
{
needFrameAvailableSignal = true;
}
else if (Slots[i].BufferState == BufferState.Free)
{
needBufferReleaseSignal = true;
}
}
}
if (needBufferReleaseSignal)
{
SignalWaitBufferFreeEvent();
}
else
{
_waitBufferFreeEvent.WritableEvent.Clear();
}
if (needFrameAvailableSignal)
{
SignalFrameAvailableEvent();
}
else
{
_frameAvailableEvent.WritableEvent.Clear();
}
}
public bool IsProducerConnectedLocked()
{
return ConnectedApi != NativeWindowApi.NoApi;
}
public bool IsConsumerConnectedLocked()
{
return ConsumerListener != null;
}
public KReadableEvent GetWaitBufferFreeEvent()
{
lock (Lock)
{
return _waitBufferFreeEvent.ReadableEvent;
}
}
public bool IsOwnedByConsumerLocked(int slot)
{
if (Slots[slot].BufferState != BufferState.Acquired)
{
Logger.Error?.Print(LogClass.SurfaceFlinger, $"Slot {slot} is not owned by the consumer (state = {Slots[slot].BufferState})");
return false;
}
return true;
}
public bool IsOwnedByProducerLocked(int slot)
{
if (Slots[slot].BufferState != BufferState.Dequeued)
{
Logger.Error?.Print(LogClass.SurfaceFlinger, $"Slot {slot} is not owned by the producer (state = {Slots[slot].BufferState})");
return false;
}
return true;
}
}
}