0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2024-12-29 16:55:47 +00:00
Ryujinx/Ryujinx.HLE/HOS/Kernel/Threading/KThread.cs
gdkchan 0c87bf9ea4
Refactor CPU interface to allow the implementation of other CPU emulators (#3362)
* Refactor CPU interface

* Use IExecutionContext interface on SVC handler, change how CPU interrupts invokes the handlers

* Make CpuEngine take a ITickSource rather than returning one

The previous implementation had the scenario where the CPU engine had to implement the tick source in mind, like for example, when we have a hypervisor and the game can read CNTPCT on the host directly. However given that we need to do conversion due to different frequencies anyway, it's not worth it. It's better to just let the user pass the tick source and redirect any reads to CNTPCT to the user tick source

* XML docs for the public interfaces

* PPTC invalidation due to NativeInterface function name changes

* Fix build of the CPU tests

* PR feedback
2022-05-31 16:29:35 -03:00

1437 lines
No EOL
43 KiB
C#

using Ryujinx.Common.Logging;
using Ryujinx.Cpu;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.SupervisorCall;
using System;
using System.Collections.Generic;
using System.Numerics;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.Threading
{
class KThread : KSynchronizationObject, IKFutureSchedulerObject
{
private const int TlsUserDisableCountOffset = 0x100;
private const int TlsUserInterruptFlagOffset = 0x102;
public const int MaxWaitSyncObjects = 64;
private ManualResetEvent _schedulerWaitEvent;
public ManualResetEvent SchedulerWaitEvent => _schedulerWaitEvent;
public Thread HostThread { get; private set; }
public IExecutionContext Context { get; private set; }
public KThreadContext ThreadContext { get; private set; }
public int DynamicPriority { get; set; }
public ulong AffinityMask { get; set; }
public ulong ThreadUid { get; private set; }
private long _totalTimeRunning;
public long TotalTimeRunning => _totalTimeRunning;
public KSynchronizationObject SignaledObj { get; set; }
public ulong CondVarAddress { get; set; }
private ulong _entrypoint;
private ThreadStart _customThreadStart;
private bool _forcedUnschedulable;
public bool IsSchedulable => _customThreadStart == null && !_forcedUnschedulable;
public ulong MutexAddress { get; set; }
public int KernelWaitersCount { get; private set; }
public KProcess Owner { get; private set; }
private ulong _tlsAddress;
public ulong TlsAddress => _tlsAddress;
public KSynchronizationObject[] WaitSyncObjects { get; }
public int[] WaitSyncHandles { get; }
public long LastScheduledTime { get; set; }
public LinkedListNode<KThread>[] SiblingsPerCore { get; private set; }
public LinkedList<KThread> Withholder { get; set; }
public LinkedListNode<KThread> WithholderNode { get; set; }
public LinkedListNode<KThread> ProcessListNode { get; set; }
private LinkedList<KThread> _mutexWaiters;
private LinkedListNode<KThread> _mutexWaiterNode;
private LinkedList<KThread> _pinnedWaiters;
public KThread MutexOwner { get; private set; }
public int ThreadHandleForUserMutex { get; set; }
private ThreadSchedState _forcePauseFlags;
private ThreadSchedState _forcePausePermissionFlags;
public KernelResult ObjSyncResult { get; set; }
public int BasePriority { get; set; }
public int PreferredCore { get; set; }
public int CurrentCore { get; set; }
public int ActiveCore { get; set; }
public bool IsPinned { get; private set; }
private ulong _originalAffinityMask;
private int _originalPreferredCore;
private int _originalBasePriority;
private int _coreMigrationDisableCount;
public ThreadSchedState SchedFlags { get; private set; }
private int _shallBeTerminated;
public bool ShallBeTerminated
{
get => _shallBeTerminated != 0;
set => _shallBeTerminated = value ? 1 : 0;
}
public bool TerminationRequested => ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending;
public bool SyncCancelled { get; set; }
public bool WaitingSync { get; set; }
private int _hasExited;
private bool _hasBeenInitialized;
private bool _hasBeenReleased;
public bool WaitingInArbitration { get; set; }
private object _activityOperationLock;
public KThread(KernelContext context) : base(context)
{
WaitSyncObjects = new KSynchronizationObject[MaxWaitSyncObjects];
WaitSyncHandles = new int[MaxWaitSyncObjects];
SiblingsPerCore = new LinkedListNode<KThread>[KScheduler.CpuCoresCount];
_mutexWaiters = new LinkedList<KThread>();
_pinnedWaiters = new LinkedList<KThread>();
_activityOperationLock = new object();
}
public KernelResult Initialize(
ulong entrypoint,
ulong argsPtr,
ulong stackTop,
int priority,
int cpuCore,
KProcess owner,
ThreadType type,
ThreadStart customThreadStart = null)
{
if ((uint)type > 3)
{
throw new ArgumentException($"Invalid thread type \"{type}\".");
}
ThreadContext = new KThreadContext();
PreferredCore = cpuCore;
AffinityMask |= 1UL << cpuCore;
SchedFlags = type == ThreadType.Dummy
? ThreadSchedState.Running
: ThreadSchedState.None;
ActiveCore = cpuCore;
ObjSyncResult = KernelResult.ThreadNotStarted;
DynamicPriority = priority;
BasePriority = priority;
CurrentCore = cpuCore;
IsPinned = false;
_entrypoint = entrypoint;
_customThreadStart = customThreadStart;
if (type == ThreadType.User)
{
if (owner.AllocateThreadLocalStorage(out _tlsAddress) != KernelResult.Success)
{
return KernelResult.OutOfMemory;
}
MemoryHelper.FillWithZeros(owner.CpuMemory, _tlsAddress, KTlsPageInfo.TlsEntrySize);
}
bool is64Bits;
if (owner != null)
{
Owner = owner;
owner.IncrementReferenceCount();
owner.IncrementThreadCount();
is64Bits = owner.Flags.HasFlag(ProcessCreationFlags.Is64Bit);
}
else
{
is64Bits = true;
}
HostThread = new Thread(ThreadStart);
Context = owner?.CreateExecutionContext() ?? new ProcessExecutionContext();
Context.IsAarch32 = !is64Bits;
Context.SetX(0, argsPtr);
if (is64Bits)
{
Context.SetX(18, KSystemControl.GenerateRandom() | 1);
Context.SetX(31, stackTop);
}
else
{
Context.SetX(13, (uint)stackTop);
}
Context.TpidrroEl0 = (long)_tlsAddress;
ThreadUid = KernelContext.NewThreadUid();
HostThread.Name = customThreadStart != null ? $"HLE.OsThread.{ThreadUid}" : $"HLE.GuestThread.{ThreadUid}";
_hasBeenInitialized = true;
_forcePausePermissionFlags = ThreadSchedState.ForcePauseMask;
if (owner != null)
{
owner.AddThread(this);
if (owner.IsPaused)
{
KernelContext.CriticalSection.Enter();
if (TerminationRequested)
{
KernelContext.CriticalSection.Leave();
return KernelResult.Success;
}
_forcePauseFlags |= ThreadSchedState.ProcessPauseFlag;
CombineForcePauseFlags();
KernelContext.CriticalSection.Leave();
}
}
return KernelResult.Success;
}
public KernelResult Start()
{
if (!KernelContext.KernelInitialized)
{
KernelContext.CriticalSection.Enter();
if (!TerminationRequested)
{
_forcePauseFlags |= ThreadSchedState.KernelInitPauseFlag;
CombineForcePauseFlags();
}
KernelContext.CriticalSection.Leave();
}
KernelResult result = KernelResult.ThreadTerminating;
KernelContext.CriticalSection.Enter();
if (!ShallBeTerminated)
{
KThread currentThread = KernelStatic.GetCurrentThread();
while (SchedFlags != ThreadSchedState.TerminationPending && (currentThread == null || !currentThread.TerminationRequested))
{
if ((SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.None)
{
result = KernelResult.InvalidState;
break;
}
if (currentThread == null || currentThread._forcePauseFlags == ThreadSchedState.None)
{
if (Owner != null && _forcePauseFlags != ThreadSchedState.None)
{
CombineForcePauseFlags();
}
SetNewSchedFlags(ThreadSchedState.Running);
StartHostThread();
result = KernelResult.Success;
break;
}
else
{
currentThread.CombineForcePauseFlags();
KernelContext.CriticalSection.Leave();
KernelContext.CriticalSection.Enter();
if (currentThread.ShallBeTerminated)
{
break;
}
}
}
}
KernelContext.CriticalSection.Leave();
return result;
}
public ThreadSchedState PrepareForTermination()
{
KernelContext.CriticalSection.Enter();
if (Owner != null && Owner.PinnedThreads[KernelStatic.GetCurrentThread().CurrentCore] == this)
{
Owner.UnpinThread(this);
}
ThreadSchedState result;
if (Interlocked.CompareExchange(ref _shallBeTerminated, 1, 0) == 0)
{
if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.None)
{
SchedFlags = ThreadSchedState.TerminationPending;
}
else
{
if (_forcePauseFlags != ThreadSchedState.None)
{
_forcePauseFlags &= ~ThreadSchedState.ThreadPauseFlag;
ThreadSchedState oldSchedFlags = SchedFlags;
SchedFlags &= ThreadSchedState.LowMask;
AdjustScheduling(oldSchedFlags);
}
if (BasePriority >= 0x10)
{
SetPriority(0xF);
}
if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Running)
{
// TODO: GIC distributor stuffs (sgir changes ect)
Context.RequestInterrupt();
}
SignaledObj = null;
ObjSyncResult = KernelResult.ThreadTerminating;
ReleaseAndResume();
}
}
result = SchedFlags;
KernelContext.CriticalSection.Leave();
return result & ThreadSchedState.LowMask;
}
public void Terminate()
{
ThreadSchedState state = PrepareForTermination();
if (state != ThreadSchedState.TerminationPending)
{
KernelContext.Synchronization.WaitFor(new KSynchronizationObject[] { this }, -1, out _);
}
}
public void HandlePostSyscall()
{
ThreadSchedState state;
do
{
if (TerminationRequested)
{
Exit();
// As the death of the thread is handled by the CPU emulator, we differ from the official kernel and return here.
break;
}
KernelContext.CriticalSection.Enter();
if (TerminationRequested)
{
state = ThreadSchedState.TerminationPending;
}
else
{
if (_forcePauseFlags != ThreadSchedState.None)
{
CombineForcePauseFlags();
}
state = ThreadSchedState.Running;
}
KernelContext.CriticalSection.Leave();
} while (state == ThreadSchedState.TerminationPending);
}
public void Exit()
{
// TODO: Debug event.
if (Owner != null)
{
Owner.ResourceLimit?.Release(LimitableResource.Thread, 0, 1);
_hasBeenReleased = true;
}
KernelContext.CriticalSection.Enter();
_forcePauseFlags &= ~ThreadSchedState.ForcePauseMask;
_forcePausePermissionFlags = 0;
bool decRef = ExitImpl();
Context.StopRunning();
KernelContext.CriticalSection.Leave();
if (decRef)
{
DecrementReferenceCount();
}
}
private bool ExitImpl()
{
KernelContext.CriticalSection.Enter();
SetNewSchedFlags(ThreadSchedState.TerminationPending);
bool decRef = Interlocked.Exchange(ref _hasExited, 1) == 0;
Signal();
KernelContext.CriticalSection.Leave();
return decRef;
}
private int GetEffectiveRunningCore()
{
for (int coreNumber = 0; coreNumber < KScheduler.CpuCoresCount; coreNumber++)
{
if (KernelContext.Schedulers[coreNumber].CurrentThread == this)
{
return coreNumber;
}
}
return -1;
}
public KernelResult Sleep(long timeout)
{
KernelContext.CriticalSection.Enter();
if (ShallBeTerminated || SchedFlags == ThreadSchedState.TerminationPending)
{
KernelContext.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
SetNewSchedFlags(ThreadSchedState.Paused);
if (timeout > 0)
{
KernelContext.TimeManager.ScheduleFutureInvocation(this, timeout);
}
KernelContext.CriticalSection.Leave();
if (timeout > 0)
{
KernelContext.TimeManager.UnscheduleFutureInvocation(this);
}
return 0;
}
public void SetPriority(int priority)
{
KernelContext.CriticalSection.Enter();
if (IsPinned)
{
_originalBasePriority = priority;
}
else
{
BasePriority = priority;
}
UpdatePriorityInheritance();
KernelContext.CriticalSection.Leave();
}
public void Suspend(ThreadSchedState type)
{
_forcePauseFlags |= type;
CombineForcePauseFlags();
}
public void Resume(ThreadSchedState type)
{
ThreadSchedState oldForcePauseFlags = _forcePauseFlags;
_forcePauseFlags &= ~type;
if ((oldForcePauseFlags & ~type) == ThreadSchedState.None)
{
ThreadSchedState oldSchedFlags = SchedFlags;
SchedFlags &= ThreadSchedState.LowMask;
AdjustScheduling(oldSchedFlags);
}
}
public KernelResult SetActivity(bool pause)
{
lock (_activityOperationLock)
{
KernelResult result = KernelResult.Success;
KernelContext.CriticalSection.Enter();
ThreadSchedState lowNibble = SchedFlags & ThreadSchedState.LowMask;
if (lowNibble != ThreadSchedState.Paused && lowNibble != ThreadSchedState.Running)
{
KernelContext.CriticalSection.Leave();
return KernelResult.InvalidState;
}
if (!ShallBeTerminated && SchedFlags != ThreadSchedState.TerminationPending)
{
if (pause)
{
// Pause, the force pause flag should be clear (thread is NOT paused).
if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) == 0)
{
Suspend(ThreadSchedState.ThreadPauseFlag);
}
else
{
result = KernelResult.InvalidState;
}
}
else
{
// Unpause, the force pause flag should be set (thread is paused).
if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) != 0)
{
Resume(ThreadSchedState.ThreadPauseFlag);
}
else
{
result = KernelResult.InvalidState;
}
}
}
KernelContext.CriticalSection.Leave();
if (result == KernelResult.Success && pause)
{
bool isThreadRunning = true;
while (isThreadRunning)
{
KernelContext.CriticalSection.Enter();
if (TerminationRequested)
{
KernelContext.CriticalSection.Leave();
break;
}
isThreadRunning = false;
if (IsPinned)
{
KThread currentThread = KernelStatic.GetCurrentThread();
if (currentThread.TerminationRequested)
{
KernelContext.CriticalSection.Leave();
result = KernelResult.ThreadTerminating;
break;
}
_pinnedWaiters.AddLast(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
}
else
{
isThreadRunning = GetEffectiveRunningCore() >= 0;
}
KernelContext.CriticalSection.Leave();
}
}
return result;
}
}
public KernelResult GetThreadContext3(out ThreadContext context)
{
context = default;
lock (_activityOperationLock)
{
KernelContext.CriticalSection.Enter();
if ((_forcePauseFlags & ThreadSchedState.ThreadPauseFlag) == 0)
{
KernelContext.CriticalSection.Leave();
return KernelResult.InvalidState;
}
if (!TerminationRequested)
{
context = GetCurrentContext();
}
KernelContext.CriticalSection.Leave();
}
return KernelResult.Success;
}
private static uint GetPsr(IExecutionContext context)
{
return context.Pstate & 0xFF0FFE20;
}
private ThreadContext GetCurrentContext()
{
const int MaxRegistersAArch32 = 15;
const int MaxFpuRegistersAArch32 = 16;
ThreadContext context = new ThreadContext();
if (Owner.Flags.HasFlag(ProcessCreationFlags.Is64Bit))
{
for (int i = 0; i < context.Registers.Length; i++)
{
context.Registers[i] = Context.GetX(i);
}
for (int i = 0; i < context.FpuRegisters.Length; i++)
{
context.FpuRegisters[i] = Context.GetV(i);
}
context.Fp = Context.GetX(29);
context.Lr = Context.GetX(30);
context.Sp = Context.GetX(31);
context.Pc = Context.Pc;
context.Pstate = GetPsr(Context);
context.Tpidr = (ulong)Context.TpidrroEl0;
}
else
{
for (int i = 0; i < MaxRegistersAArch32; i++)
{
context.Registers[i] = (uint)Context.GetX(i);
}
for (int i = 0; i < MaxFpuRegistersAArch32; i++)
{
context.FpuRegisters[i] = Context.GetV(i);
}
context.Pc = (uint)Context.Pc;
context.Pstate = GetPsr(Context);
context.Tpidr = (uint)Context.TpidrroEl0;
}
context.Fpcr = (uint)Context.Fpcr;
context.Fpsr = (uint)Context.Fpsr;
return context;
}
public void CancelSynchronization()
{
KernelContext.CriticalSection.Enter();
if ((SchedFlags & ThreadSchedState.LowMask) != ThreadSchedState.Paused || !WaitingSync)
{
SyncCancelled = true;
}
else if (Withholder != null)
{
Withholder.Remove(WithholderNode);
SetNewSchedFlags(ThreadSchedState.Running);
Withholder = null;
SyncCancelled = true;
}
else
{
SignaledObj = null;
ObjSyncResult = KernelResult.Cancelled;
SetNewSchedFlags(ThreadSchedState.Running);
SyncCancelled = false;
}
KernelContext.CriticalSection.Leave();
}
public KernelResult SetCoreAndAffinityMask(int newCore, ulong newAffinityMask)
{
lock (_activityOperationLock)
{
KernelContext.CriticalSection.Enter();
bool isCoreMigrationDisabled = _coreMigrationDisableCount != 0;
// The value -3 is "do not change the preferred core".
if (newCore == -3)
{
newCore = isCoreMigrationDisabled ? _originalPreferredCore : PreferredCore;
if ((newAffinityMask & (1UL << newCore)) == 0)
{
KernelContext.CriticalSection.Leave();
return KernelResult.InvalidCombination;
}
}
if (isCoreMigrationDisabled)
{
_originalPreferredCore = newCore;
_originalAffinityMask = newAffinityMask;
}
else
{
ulong oldAffinityMask = AffinityMask;
PreferredCore = newCore;
AffinityMask = newAffinityMask;
if (oldAffinityMask != newAffinityMask)
{
int oldCore = ActiveCore;
if (oldCore >= 0 && ((AffinityMask >> oldCore) & 1) == 0)
{
if (PreferredCore < 0)
{
ActiveCore = sizeof(ulong) * 8 - 1 - BitOperations.LeadingZeroCount(AffinityMask);
}
else
{
ActiveCore = PreferredCore;
}
}
AdjustSchedulingForNewAffinity(oldAffinityMask, oldCore);
}
}
KernelContext.CriticalSection.Leave();
bool targetThreadPinned = true;
while (targetThreadPinned)
{
KernelContext.CriticalSection.Enter();
if (TerminationRequested)
{
KernelContext.CriticalSection.Leave();
break;
}
targetThreadPinned = false;
int coreNumber = GetEffectiveRunningCore();
bool isPinnedThreadCurrentlyRunning = coreNumber >= 0;
if (isPinnedThreadCurrentlyRunning && ((1UL << coreNumber) & AffinityMask) == 0)
{
if (IsPinned)
{
KThread currentThread = KernelStatic.GetCurrentThread();
if (currentThread.TerminationRequested)
{
KernelContext.CriticalSection.Leave();
return KernelResult.ThreadTerminating;
}
_pinnedWaiters.AddLast(currentThread);
currentThread.Reschedule(ThreadSchedState.Paused);
}
else
{
targetThreadPinned = true;
}
}
KernelContext.CriticalSection.Leave();
}
return KernelResult.Success;
}
}
private void CombineForcePauseFlags()
{
ThreadSchedState oldFlags = SchedFlags;
ThreadSchedState lowNibble = SchedFlags & ThreadSchedState.LowMask;
SchedFlags = lowNibble | (_forcePauseFlags & _forcePausePermissionFlags);
AdjustScheduling(oldFlags);
}
private void SetNewSchedFlags(ThreadSchedState newFlags)
{
KernelContext.CriticalSection.Enter();
ThreadSchedState oldFlags = SchedFlags;
SchedFlags = (oldFlags & ThreadSchedState.HighMask) | newFlags;
if ((oldFlags & ThreadSchedState.LowMask) != newFlags)
{
AdjustScheduling(oldFlags);
}
KernelContext.CriticalSection.Leave();
}
public void ReleaseAndResume()
{
KernelContext.CriticalSection.Enter();
if ((SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Paused)
{
if (Withholder != null)
{
Withholder.Remove(WithholderNode);
SetNewSchedFlags(ThreadSchedState.Running);
Withholder = null;
}
else
{
SetNewSchedFlags(ThreadSchedState.Running);
}
}
KernelContext.CriticalSection.Leave();
}
public void Reschedule(ThreadSchedState newFlags)
{
KernelContext.CriticalSection.Enter();
ThreadSchedState oldFlags = SchedFlags;
SchedFlags = (oldFlags & ThreadSchedState.HighMask) |
(newFlags & ThreadSchedState.LowMask);
AdjustScheduling(oldFlags);
KernelContext.CriticalSection.Leave();
}
public void AddMutexWaiter(KThread requester)
{
AddToMutexWaitersList(requester);
requester.MutexOwner = this;
UpdatePriorityInheritance();
}
public void RemoveMutexWaiter(KThread thread)
{
if (thread._mutexWaiterNode?.List != null)
{
_mutexWaiters.Remove(thread._mutexWaiterNode);
}
thread.MutexOwner = null;
UpdatePriorityInheritance();
}
public KThread RelinquishMutex(ulong mutexAddress, out int count)
{
count = 0;
if (_mutexWaiters.First == null)
{
return null;
}
KThread newMutexOwner = null;
LinkedListNode<KThread> currentNode = _mutexWaiters.First;
do
{
// Skip all threads that are not waiting for this mutex.
while (currentNode != null && currentNode.Value.MutexAddress != mutexAddress)
{
currentNode = currentNode.Next;
}
if (currentNode == null)
{
break;
}
LinkedListNode<KThread> nextNode = currentNode.Next;
_mutexWaiters.Remove(currentNode);
currentNode.Value.MutexOwner = newMutexOwner;
if (newMutexOwner != null)
{
// New owner was already selected, re-insert on new owner list.
newMutexOwner.AddToMutexWaitersList(currentNode.Value);
}
else
{
// New owner not selected yet, use current thread.
newMutexOwner = currentNode.Value;
}
count++;
currentNode = nextNode;
}
while (currentNode != null);
if (newMutexOwner != null)
{
UpdatePriorityInheritance();
newMutexOwner.UpdatePriorityInheritance();
}
return newMutexOwner;
}
private void UpdatePriorityInheritance()
{
// If any of the threads waiting for the mutex has
// higher priority than the current thread, then
// the current thread inherits that priority.
int highestPriority = BasePriority;
if (_mutexWaiters.First != null)
{
int waitingDynamicPriority = _mutexWaiters.First.Value.DynamicPriority;
if (waitingDynamicPriority < highestPriority)
{
highestPriority = waitingDynamicPriority;
}
}
if (highestPriority != DynamicPriority)
{
int oldPriority = DynamicPriority;
DynamicPriority = highestPriority;
AdjustSchedulingForNewPriority(oldPriority);
if (MutexOwner != null)
{
// Remove and re-insert to ensure proper sorting based on new priority.
MutexOwner._mutexWaiters.Remove(_mutexWaiterNode);
MutexOwner.AddToMutexWaitersList(this);
MutexOwner.UpdatePriorityInheritance();
}
}
}
private void AddToMutexWaitersList(KThread thread)
{
LinkedListNode<KThread> nextPrio = _mutexWaiters.First;
int currentPriority = thread.DynamicPriority;
while (nextPrio != null && nextPrio.Value.DynamicPriority <= currentPriority)
{
nextPrio = nextPrio.Next;
}
if (nextPrio != null)
{
thread._mutexWaiterNode = _mutexWaiters.AddBefore(nextPrio, thread);
}
else
{
thread._mutexWaiterNode = _mutexWaiters.AddLast(thread);
}
}
private void AdjustScheduling(ThreadSchedState oldFlags)
{
if (oldFlags == SchedFlags)
{
return;
}
if (!IsSchedulable)
{
if (!_forcedUnschedulable)
{
// Ensure our thread is running and we have an event.
StartHostThread();
// If the thread is not schedulable, we want to just run or pause
// it directly as we don't care about priority or the core it is
// running on in this case.
if (SchedFlags == ThreadSchedState.Running)
{
_schedulerWaitEvent.Set();
}
else
{
_schedulerWaitEvent.Reset();
}
}
return;
}
if (oldFlags == ThreadSchedState.Running)
{
// Was running, now it's stopped.
if (ActiveCore >= 0)
{
KernelContext.PriorityQueue.Unschedule(DynamicPriority, ActiveCore, this);
}
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
if (core != ActiveCore && ((AffinityMask >> core) & 1) != 0)
{
KernelContext.PriorityQueue.Unsuggest(DynamicPriority, core, this);
}
}
}
else if (SchedFlags == ThreadSchedState.Running)
{
// Was stopped, now it's running.
if (ActiveCore >= 0)
{
KernelContext.PriorityQueue.Schedule(DynamicPriority, ActiveCore, this);
}
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
if (core != ActiveCore && ((AffinityMask >> core) & 1) != 0)
{
KernelContext.PriorityQueue.Suggest(DynamicPriority, core, this);
}
}
}
KernelContext.ThreadReselectionRequested = true;
}
private void AdjustSchedulingForNewPriority(int oldPriority)
{
if (SchedFlags != ThreadSchedState.Running || !IsSchedulable)
{
return;
}
// Remove thread from the old priority queues.
if (ActiveCore >= 0)
{
KernelContext.PriorityQueue.Unschedule(oldPriority, ActiveCore, this);
}
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
if (core != ActiveCore && ((AffinityMask >> core) & 1) != 0)
{
KernelContext.PriorityQueue.Unsuggest(oldPriority, core, this);
}
}
// Add thread to the new priority queues.
KThread currentThread = KernelStatic.GetCurrentThread();
if (ActiveCore >= 0)
{
if (currentThread == this)
{
KernelContext.PriorityQueue.SchedulePrepend(DynamicPriority, ActiveCore, this);
}
else
{
KernelContext.PriorityQueue.Schedule(DynamicPriority, ActiveCore, this);
}
}
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
if (core != ActiveCore && ((AffinityMask >> core) & 1) != 0)
{
KernelContext.PriorityQueue.Suggest(DynamicPriority, core, this);
}
}
KernelContext.ThreadReselectionRequested = true;
}
private void AdjustSchedulingForNewAffinity(ulong oldAffinityMask, int oldCore)
{
if (SchedFlags != ThreadSchedState.Running || DynamicPriority >= KScheduler.PrioritiesCount || !IsSchedulable)
{
return;
}
// Remove thread from the old priority queues.
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
if (((oldAffinityMask >> core) & 1) != 0)
{
if (core == oldCore)
{
KernelContext.PriorityQueue.Unschedule(DynamicPriority, core, this);
}
else
{
KernelContext.PriorityQueue.Unsuggest(DynamicPriority, core, this);
}
}
}
// Add thread to the new priority queues.
for (int core = 0; core < KScheduler.CpuCoresCount; core++)
{
if (((AffinityMask >> core) & 1) != 0)
{
if (core == ActiveCore)
{
KernelContext.PriorityQueue.Schedule(DynamicPriority, core, this);
}
else
{
KernelContext.PriorityQueue.Suggest(DynamicPriority, core, this);
}
}
}
KernelContext.ThreadReselectionRequested = true;
}
public void SetEntryArguments(long argsPtr, int threadHandle)
{
Context.SetX(0, (ulong)argsPtr);
Context.SetX(1, (ulong)threadHandle);
}
public void TimeUp()
{
ReleaseAndResume();
}
public string GetGuestStackTrace()
{
return Owner.Debugger.GetGuestStackTrace(this);
}
public string GetGuestRegisterPrintout()
{
return Owner.Debugger.GetCpuRegisterPrintout(this);
}
public void PrintGuestStackTrace()
{
Logger.Info?.Print(LogClass.Cpu, $"Guest stack trace:\n{GetGuestStackTrace()}\n");
}
public void PrintGuestRegisterPrintout()
{
Logger.Info?.Print(LogClass.Cpu, $"Guest CPU registers:\n{GetGuestRegisterPrintout()}\n");
}
public void AddCpuTime(long ticks)
{
Interlocked.Add(ref _totalTimeRunning, ticks);
}
public void StartHostThread()
{
if (_schedulerWaitEvent == null)
{
var schedulerWaitEvent = new ManualResetEvent(false);
if (Interlocked.Exchange(ref _schedulerWaitEvent, schedulerWaitEvent) == null)
{
HostThread.Start();
}
else
{
schedulerWaitEvent.Dispose();
}
}
}
private void ThreadStart()
{
_schedulerWaitEvent.WaitOne();
KernelStatic.SetKernelContext(KernelContext, this);
if (_customThreadStart != null)
{
_customThreadStart();
}
else
{
Owner.Context.Execute(Context, _entrypoint);
}
Context.Dispose();
_schedulerWaitEvent.Dispose();
}
public void MakeUnschedulable()
{
_forcedUnschedulable = true;
}
public override bool IsSignaled()
{
return _hasExited != 0;
}
protected override void Destroy()
{
if (_hasBeenInitialized)
{
FreeResources();
bool released = Owner != null || _hasBeenReleased;
if (Owner != null)
{
Owner.ResourceLimit?.Release(LimitableResource.Thread, 1, released ? 0 : 1);
Owner.DecrementReferenceCount();
}
else
{
KernelContext.ResourceLimit.Release(LimitableResource.Thread, 1, released ? 0 : 1);
}
}
}
private void FreeResources()
{
Owner?.RemoveThread(this);
if (_tlsAddress != 0 && Owner.FreeThreadLocalStorage(_tlsAddress) != KernelResult.Success)
{
throw new InvalidOperationException("Unexpected failure freeing thread local storage.");
}
KernelContext.CriticalSection.Enter();
// Wake up all threads that may be waiting for a mutex being held by this thread.
foreach (KThread thread in _mutexWaiters)
{
thread.MutexOwner = null;
thread._originalPreferredCore = 0;
thread.ObjSyncResult = KernelResult.InvalidState;
thread.ReleaseAndResume();
}
KernelContext.CriticalSection.Leave();
Owner?.DecrementThreadCountAndTerminateIfZero();
}
public void Pin()
{
IsPinned = true;
_coreMigrationDisableCount++;
int activeCore = ActiveCore;
_originalPreferredCore = PreferredCore;
_originalAffinityMask = AffinityMask;
ActiveCore = CurrentCore;
PreferredCore = CurrentCore;
AffinityMask = 1UL << CurrentCore;
if (activeCore != CurrentCore || _originalAffinityMask != AffinityMask)
{
AdjustSchedulingForNewAffinity(_originalAffinityMask, activeCore);
}
_originalBasePriority = BasePriority;
BasePriority = Math.Min(_originalBasePriority, BitOperations.TrailingZeroCount(Owner.Capabilities.AllowedThreadPriosMask) - 1);
UpdatePriorityInheritance();
// Disallows thread pausing
_forcePausePermissionFlags &= ~ThreadSchedState.ThreadPauseFlag;
CombineForcePauseFlags();
// TODO: Assign reduced SVC permissions
}
public void Unpin()
{
IsPinned = false;
_coreMigrationDisableCount--;
ulong affinityMask = AffinityMask;
int activeCore = ActiveCore;
PreferredCore = _originalPreferredCore;
AffinityMask = _originalAffinityMask;
if (AffinityMask != affinityMask)
{
if ((AffinityMask & 1UL << ActiveCore) != 0)
{
if (PreferredCore >= 0)
{
ActiveCore = PreferredCore;
}
else
{
ActiveCore = sizeof(ulong) * 8 - 1 - BitOperations.LeadingZeroCount((ulong)AffinityMask);
}
AdjustSchedulingForNewAffinity(affinityMask, activeCore);
}
}
BasePriority = _originalBasePriority;
UpdatePriorityInheritance();
if (!TerminationRequested)
{
// Allows thread pausing
_forcePausePermissionFlags |= ThreadSchedState.ThreadPauseFlag;
CombineForcePauseFlags();
// TODO: Restore SVC permissions
}
// Wake up waiters
foreach (KThread waiter in _pinnedWaiters)
{
waiter.ReleaseAndResume();
}
_pinnedWaiters.Clear();
}
public void SynchronizePreemptionState()
{
KernelContext.CriticalSection.Enter();
if (Owner != null && Owner.PinnedThreads[CurrentCore] == this)
{
ClearUserInterruptFlag();
Owner.UnpinThread(this);
}
KernelContext.CriticalSection.Leave();
}
public ushort GetUserDisableCount()
{
return Owner.CpuMemory.Read<ushort>(_tlsAddress + TlsUserDisableCountOffset);
}
public void SetUserInterruptFlag()
{
Owner.CpuMemory.Write<ushort>(_tlsAddress + TlsUserInterruptFlagOffset, 1);
}
public void ClearUserInterruptFlag()
{
Owner.CpuMemory.Write<ushort>(_tlsAddress + TlsUserInterruptFlagOffset, 0);
}
}
}