0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-10 05:52:01 +00:00
Ryujinx/ARMeilleure/Instructions/InstEmitSimdLogical32.cs
Valentin PONS 3af2ce74ec
Implements some 32-bit instructions (VBIC, VTST, VSRA) (#1192)
* Added some 32 bits instructions:

* VBIC
* VTST
* VSRA

* Incremented the PTC

* Add tests and fix implementation

* Fixed VBIC immediate opcode mapping

* Hey hey!

* Nit.

Co-authored-by: gdkchan <gab.dark.100@gmail.com>
Co-authored-by: LDj3SNuD <dvitiello@gmail.com>
Co-authored-by: LDj3SNuD <35856442+LDj3SNuD@users.noreply.github.com>
2020-07-19 15:11:58 -03:00

203 lines
6.7 KiB
C#

using ARMeilleure.Decoders;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Translation;
using static ARMeilleure.Instructions.InstEmitHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper;
using static ARMeilleure.Instructions.InstEmitSimdHelper32;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.Instructions
{
static partial class InstEmit32
{
public static void Vand_I(ArmEmitterContext context)
{
if (Optimizations.UseSse2)
{
EmitVectorBinaryOpSimd32(context, (n, m) => context.AddIntrinsic(Intrinsic.X86Pand, n, m));
}
else
{
EmitVectorBinaryOpZx32(context, (op1, op2) => context.BitwiseAnd(op1, op2));
}
}
public static void Vbic_I(ArmEmitterContext context)
{
if (Optimizations.UseSse2)
{
EmitVectorBinaryOpSimd32(context, (n, m) => context.AddIntrinsic(Intrinsic.X86Pandn, m, n));
}
else
{
EmitVectorBinaryOpZx32(context, (op1, op2) => context.BitwiseAnd(op1, context.BitwiseNot(op2)));
}
}
public static void Vbic_II(ArmEmitterContext context)
{
OpCode32SimdImm op = (OpCode32SimdImm)context.CurrOp;
long immediate = op.Immediate;
// Replicate fields to fill the 64-bits, if size is < 64-bits.
switch (op.Size)
{
case 0: immediate *= 0x0101010101010101L; break;
case 1: immediate *= 0x0001000100010001L; break;
case 2: immediate *= 0x0000000100000001L; break;
}
Operand imm = Const(immediate);
Operand res = GetVecA32(op.Qd);
if (op.Q)
{
for (int elem = 0; elem < 2; elem++)
{
Operand de = EmitVectorExtractZx(context, op.Qd, elem, 3);
res = EmitVectorInsert(context, res, context.BitwiseAnd(de, context.BitwiseNot(imm)), elem, 3);
}
}
else
{
Operand de = EmitVectorExtractZx(context, op.Qd, op.Vd & 1, 3);
res = EmitVectorInsert(context, res, context.BitwiseAnd(de, context.BitwiseNot(imm)), op.Vd & 1, 3);
}
context.Copy(GetVecA32(op.Qd), res);
}
public static void Vbif(ArmEmitterContext context)
{
EmitBifBit(context, true);
}
public static void Vbit(ArmEmitterContext context)
{
EmitBifBit(context, false);
}
public static void Vbsl(ArmEmitterContext context)
{
if (Optimizations.UseSse2)
{
EmitVectorTernaryOpSimd32(context, (d, n, m) =>
{
Operand res = context.AddIntrinsic(Intrinsic.X86Pxor, n, m);
res = context.AddIntrinsic(Intrinsic.X86Pand, res, d);
return context.AddIntrinsic(Intrinsic.X86Pxor, res, m);
});
}
else
{
EmitVectorTernaryOpZx32(context, (op1, op2, op3) =>
{
return context.BitwiseExclusiveOr(
context.BitwiseAnd(op1,
context.BitwiseExclusiveOr(op2, op3)), op3);
});
}
}
public static void Veor_I(ArmEmitterContext context)
{
if (Optimizations.UseSse2)
{
EmitVectorBinaryOpSimd32(context, (n, m) => context.AddIntrinsic(Intrinsic.X86Pxor, n, m));
}
else
{
EmitVectorBinaryOpZx32(context, (op1, op2) => context.BitwiseExclusiveOr(op1, op2));
}
}
public static void Vorr_I(ArmEmitterContext context)
{
if (Optimizations.UseSse2)
{
EmitVectorBinaryOpSimd32(context, (n, m) => context.AddIntrinsic(Intrinsic.X86Por, n, m));
}
else
{
EmitVectorBinaryOpZx32(context, (op1, op2) => context.BitwiseOr(op1, op2));
}
}
public static void Vorr_II(ArmEmitterContext context)
{
OpCode32SimdImm op = (OpCode32SimdImm)context.CurrOp;
long immediate = op.Immediate;
// Replicate fields to fill the 64-bits, if size is < 64-bits.
switch (op.Size)
{
case 0: immediate *= 0x0101010101010101L; break;
case 1: immediate *= 0x0001000100010001L; break;
case 2: immediate *= 0x0000000100000001L; break;
}
Operand imm = Const(immediate);
Operand res = GetVecA32(op.Qd);
if (op.Q)
{
for (int elem = 0; elem < 2; elem++)
{
Operand de = EmitVectorExtractZx(context, op.Qd, elem, 3);
res = EmitVectorInsert(context, res, context.BitwiseOr(de, imm), elem, 3);
}
}
else
{
Operand de = EmitVectorExtractZx(context, op.Qd, op.Vd & 1, 3);
res = EmitVectorInsert(context, res, context.BitwiseOr(de, imm), op.Vd & 1, 3);
}
context.Copy(GetVecA32(op.Qd), res);
}
public static void Vtst(ArmEmitterContext context)
{
EmitVectorBinaryOpZx32(context, (op1, op2) =>
{
Operand isZero = context.ICompareEqual(context.BitwiseAnd(op1, op2), Const(0));
return context.ConditionalSelect(isZero, Const(0), Const(-1));
});
}
private static void EmitBifBit(ArmEmitterContext context, bool notRm)
{
OpCode32SimdReg op = (OpCode32SimdReg)context.CurrOp;
if (Optimizations.UseSse2)
{
EmitVectorTernaryOpSimd32(context, (d, n, m) =>
{
Operand res = context.AddIntrinsic(Intrinsic.X86Pxor, n, d);
res = context.AddIntrinsic((notRm) ? Intrinsic.X86Pandn : Intrinsic.X86Pand, m, res);
return context.AddIntrinsic(Intrinsic.X86Pxor, d, res);
});
}
else
{
EmitVectorTernaryOpZx32(context, (d, n, m) =>
{
if (notRm)
{
m = context.BitwiseNot(m);
}
return context.BitwiseExclusiveOr(
context.BitwiseAnd(m,
context.BitwiseExclusiveOr(d, n)), d);
});
}
}
}
}