using ARMeilleure.Decoders;
using ARMeilleure.Diagnostics;
using ARMeilleure.Instructions;
using ARMeilleure.IntermediateRepresentation;
using ARMeilleure.Memory;
using ARMeilleure.State;
using System;
using System.Collections.Concurrent;
using System.Threading;
using static ARMeilleure.IntermediateRepresentation.OperandHelper;
namespace ARMeilleure.Translation
{
public class Translator
private const ulong CallFlag = InstEmitFlowHelper.CallFlag;
private MemoryManager _memory;
private ConcurrentDictionary<ulong, TranslatedFunction> _funcs;
private PriorityQueue<RejitRequest> _backgroundQueue;
private AutoResetEvent _backgroundTranslatorEvent;
private volatile int _threadCount;
public Translator(MemoryManager memory)
_memory = memory;
_funcs = new ConcurrentDictionary<ulong, TranslatedFunction>();
_backgroundQueue = new PriorityQueue<RejitRequest>(2);
_backgroundTranslatorEvent = new AutoResetEvent(false);
}
private void TranslateQueuedSubs()
while (_threadCount != 0)
if (_backgroundQueue.TryDequeue(out RejitRequest request))
TranslatedFunction func = Translate(request.Address, request.Mode, highCq: true);
_funcs.AddOrUpdate(request.Address, func, (key, oldFunc) => func);
else
_backgroundTranslatorEvent.WaitOne();
public void Execute(State.ExecutionContext context, ulong address)
if (Interlocked.Increment(ref _threadCount) == 1)
Thread backgroundTranslatorThread = new Thread(TranslateQueuedSubs)
Name = "CPU.BackgroundTranslatorThread",
Priority = ThreadPriority.Lowest
};
backgroundTranslatorThread.Start();
Statistics.InitializeTimer();
NativeInterface.RegisterThread(context, _memory);
do
address = ExecuteSingle(context, address);
while (context.Running && (address & ~1UL) != 0);
NativeInterface.UnregisterThread();
if (Interlocked.Decrement(ref _threadCount) == 0)
_backgroundTranslatorEvent.Set();
public ulong ExecuteSingle(State.ExecutionContext context, ulong address)
TranslatedFunction func = GetOrTranslate(address, context.ExecutionMode);
Statistics.StartTimer();
ulong nextAddr = func.Execute(context);
Statistics.StopTimer(address);
return nextAddr;
private TranslatedFunction GetOrTranslate(ulong address, ExecutionMode mode)
// TODO: Investigate how we should handle code at unaligned addresses.
// Currently, those low bits are used to store special flags.
bool isCallTarget = (address & CallFlag) != 0;
address &= ~CallFlag;
if (!_funcs.TryGetValue(address, out TranslatedFunction func))
func = Translate(address, mode, highCq: false);
_funcs.TryAdd(address, func);
else if (isCallTarget && func.ShouldRejit())
_backgroundQueue.Enqueue(0, new RejitRequest(address, mode));
return func;
private TranslatedFunction Translate(ulong address, ExecutionMode mode, bool highCq)
ArmEmitterContext context = new ArmEmitterContext(_memory, Aarch32Mode.User);
Logger.StartPass(PassName.Decoding);
Block[] blocks = highCq
? Decoder.DecodeFunction (_memory, address, mode)
: Decoder.DecodeBasicBlock(_memory, address, mode);
Logger.EndPass(PassName.Decoding);
Logger.StartPass(PassName.Translation);
EmitSynchronization(context);
if (blocks[0].Address != address)
context.Branch(context.GetLabel(address));
ControlFlowGraph cfg = EmitAndGetCFG(context, blocks);
Logger.EndPass(PassName.Translation);
Logger.StartPass(PassName.RegisterUsage);
RegisterUsage.RunPass(cfg, mode, isCompleteFunction: false);
Logger.EndPass(PassName.RegisterUsage);
OperandType[] argTypes = new OperandType[] { OperandType.I64 };
CompilerOptions options = highCq
? CompilerOptions.HighCq
: CompilerOptions.None;
GuestFunction func = Compiler.Compile<GuestFunction>(cfg, argTypes, OperandType.I64, options);
return new TranslatedFunction(func, rejit: !highCq);
private static ControlFlowGraph EmitAndGetCFG(ArmEmitterContext context, Block[] blocks)
for (int blkIndex = 0; blkIndex < blocks.Length; blkIndex++)
Block block = blocks[blkIndex];
context.CurrBlock = block;
context.MarkLabel(context.GetLabel(block.Address));
for (int opcIndex = 0; opcIndex < block.OpCodes.Count; opcIndex++)
OpCode opCode = block.OpCodes[opcIndex];
context.CurrOp = opCode;
bool isLastOp = opcIndex == block.OpCodes.Count - 1;
if (isLastOp && block.Branch != null && block.Branch.Address <= block.Address)
Operand lblPredicateSkip = null;
if (opCode is OpCode32 op && op.Cond < Condition.Al)
lblPredicateSkip = Label();
InstEmitFlowHelper.EmitCondBranch(context, lblPredicateSkip, op.Cond.Invert());
if (opCode.Instruction.Emitter != null)
opCode.Instruction.Emitter(context);
throw new InvalidOperationException($"Invalid instruction \"{opCode.Instruction.Name}\".");
if (lblPredicateSkip != null)
context.MarkLabel(lblPredicateSkip);
// If this is the last op on the block, and there's no "next" block
// after this one, then we have to return right now, with the address
// of the next instruction to be executed (in the case that the condition
// is false, and the branch was not taken, as all basic blocks should end
// with some kind of branch).
if (isLastOp && block.Next == null)
context.Return(Const(opCode.Address + (ulong)opCode.OpCodeSizeInBytes));
return context.GetControlFlowGraph();
private static void EmitSynchronization(EmitterContext context)
long countOffs = NativeContext.GetCounterOffset();
Operand countAddr = context.Add(context.LoadArgument(OperandType.I64, 0), Const(countOffs));
Operand count = context.Load(OperandType.I32, countAddr);
Operand lblNonZero = Label();
Operand lblExit = Label();
context.BranchIfTrue(lblNonZero, count);
context.Call(new _Void(NativeInterface.CheckSynchronization));
context.Branch(lblExit);
context.MarkLabel(lblNonZero);
count = context.Subtract(count, Const(1));
context.Store(countAddr, count);
context.MarkLabel(lblExit);