0
0
Fork 0
This repository has been archived on 2024-10-12. You can view files and clone it, but cannot push or open issues or pull requests.
ryujinx-final/Ryujinx.Audio.Renderer/Dsp/DataSourceHelper.cs
Mary a389dd59bd
Amadeus: Final Act (#1481)
* Amadeus: Final Act

This is my requiem, I present to you Amadeus, a complete reimplementation of the Audio Renderer!

This reimplementation is based on my reversing of every version of the audio system module that I carried for the past 10 months.
This supports every revision (at the time of writing REV1 to REV8 included) and all features proposed by the Audio Renderer on real hardware.

Because this component could be used outside an emulation context, and to avoid possible "inspirations" not crediting the project, I decided to license the Ryujinx.Audio.Renderer project under LGPLv3.

- FE3H voices in videos and chapter intro are not present.
- Games that use two audio renderer **at the same time** are probably going to have issues right now **until we rewrite the audio output interface** (Crash Team Racing is the only known game to use two renderer at the same time).

- Persona 5 Scrambler now goes ingame but audio is garbage. This is caused by the fact that the game engine is syncing audio and video in a really aggressive way. This will disappears the day this game run at full speed.

* Make timing more precise when sleeping on Windows

Improve precision to a 1ms resolution on Windows NT based OS.
This is used to avoid having totally erratic timings and unify all
Windows users to the same resolution.

NOTE: This is only active when emulation is running.
2020-08-17 22:49:37 -03:00

408 lines
17 KiB
C#

//
// Copyright (c) 2019-2020 Ryujinx
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
using Ryujinx.Audio.Renderer.Common;
using Ryujinx.Audio.Renderer.Dsp.State;
using Ryujinx.Common.Logging;
using Ryujinx.Cpu;
using System;
using System.Buffers;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
using static Ryujinx.Audio.Renderer.Parameter.VoiceInParameter;
namespace Ryujinx.Audio.Renderer.Dsp
{
public static class DataSourceHelper
{
private const int FixedPointPrecision = 15;
public class WaveBufferInformation
{
public Memory<VoiceUpdateState> State;
public uint SourceSampleRate;
public SampleFormat SampleFormat;
public float Pitch;
public DecodingBehaviour DecodingBehaviour;
public WaveBuffer[] WaveBuffers;
public ulong ExtraParameter;
public ulong ExtraParameterSize;
public int ChannelIndex;
public int ChannelCount;
public SampleRateConversionQuality SrcQuality;
}
private static int GetPitchLimitBySrcQuality(SampleRateConversionQuality quality)
{
switch (quality)
{
case SampleRateConversionQuality.Default:
case SampleRateConversionQuality.Low:
return 4;
case SampleRateConversionQuality.High:
return 8;
default:
throw new ArgumentException($"{quality}");
}
}
public static void ProcessWaveBuffers(MemoryManager memoryManager, Span<float> outputBuffer, WaveBufferInformation info, uint targetSampleRate, int sampleCount)
{
const int tempBufferSize = 0x3F00;
ref VoiceUpdateState state = ref info.State.Span[0];
short[] tempBuffer = ArrayPool<short>.Shared.Rent(tempBufferSize);
float sampleRateRatio = ((float)info.SourceSampleRate / targetSampleRate * info.Pitch);
float fraction = state.Fraction;
int waveBufferIndex = (int)state.WaveBufferIndex;
ulong playedSampleCount = state.PlayedSampleCount;
int offset = state.Offset;
uint waveBufferConsumed = state.WaveBufferConsumed;
int pitchMaxLength = GetPitchLimitBySrcQuality(info.SrcQuality);
int totalNeededSize = (int)MathF.Truncate(fraction + sampleRateRatio * sampleCount);
if (totalNeededSize + pitchMaxLength <= tempBufferSize && totalNeededSize >= 0)
{
int sourceSampleCountToProcess = sampleCount;
int maxSampleCountPerIteration = Math.Min((int)MathF.Truncate((tempBufferSize - fraction) / sampleRateRatio), sampleCount);
bool isStarving = false;
int i = 0;
while (i < sourceSampleCountToProcess)
{
int tempBufferIndex = 0;
if (!info.DecodingBehaviour.HasFlag(DecodingBehaviour.SkipPitchAndSampleRateConversion))
{
state.Pitch.ToSpan().Slice(0, pitchMaxLength).CopyTo(tempBuffer.AsSpan());
tempBufferIndex += pitchMaxLength;
}
int sampleCountToProcess = Math.Min(sourceSampleCountToProcess, maxSampleCountPerIteration);
int y = 0;
int sampleCountToDecode = (int)MathF.Truncate(fraction + sampleRateRatio * sampleCountToProcess);
while (y < sampleCountToDecode)
{
if (waveBufferIndex >= RendererConstants.VoiceWaveBufferCount)
{
Logger.Error?.Print(LogClass.AudioRenderer, $"Invalid WaveBuffer index {waveBufferIndex}");
waveBufferIndex = 0;
playedSampleCount = 0;
}
if (!state.IsWaveBufferValid[waveBufferIndex])
{
isStarving = true;
break;
}
ref WaveBuffer waveBuffer = ref info.WaveBuffers[waveBufferIndex];
if (offset == 0 && info.SampleFormat == SampleFormat.Adpcm && waveBuffer.Context != 0)
{
state.LoopContext = memoryManager.Read<AdpcmLoopContext>(waveBuffer.Context);
}
Span<short> tempSpan = tempBuffer.AsSpan().Slice(tempBufferIndex + y);
int decodedSampleCount = -1;
int targetSampleStartOffset;
int targetSampleEndOffset;
if (state.LoopCount > 0 && waveBuffer.LoopStartSampleOffset != 0 && waveBuffer.LoopEndSampleOffset != 0 && waveBuffer.LoopStartSampleOffset <= waveBuffer.LoopEndSampleOffset)
{
targetSampleStartOffset = (int)waveBuffer.LoopStartSampleOffset;
targetSampleEndOffset = (int)waveBuffer.LoopEndSampleOffset;
}
else
{
targetSampleStartOffset = (int)waveBuffer.StartSampleOffset;
targetSampleEndOffset = (int)waveBuffer.EndSampleOffset;
}
int targetWaveBufferSampleCount = targetSampleEndOffset - targetSampleStartOffset;
switch (info.SampleFormat)
{
case SampleFormat.Adpcm:
ReadOnlySpan<byte> waveBufferAdpcm = ReadOnlySpan<byte>.Empty;
if (waveBuffer.Buffer != 0 && waveBuffer.BufferSize != 0)
{
// TODO: we are possibly copying a lot of unneeded data here, we should only take what we need.
waveBufferAdpcm = memoryManager.GetSpan(waveBuffer.Buffer, (int)waveBuffer.BufferSize);
}
ReadOnlySpan<short> coefficients = MemoryMarshal.Cast<byte, short>(memoryManager.GetSpan(info.ExtraParameter, (int)info.ExtraParameterSize));
decodedSampleCount = AdpcmHelper.Decode(tempSpan, waveBufferAdpcm, targetSampleStartOffset, targetSampleEndOffset, offset, sampleCountToDecode - y, coefficients, ref state.LoopContext);
break;
case SampleFormat.PcmInt16:
ReadOnlySpan<short> waveBufferPcm16 = ReadOnlySpan<short>.Empty;
if (waveBuffer.Buffer != 0 && waveBuffer.BufferSize != 0)
{
ulong bufferOffset = waveBuffer.Buffer + PcmHelper.GetBufferOffset<short>(targetSampleStartOffset, offset, info.ChannelCount);
int bufferSize = PcmHelper.GetBufferSize<short>(targetSampleStartOffset, targetSampleEndOffset, offset, sampleCountToDecode - y) * info.ChannelCount;
waveBufferPcm16 = MemoryMarshal.Cast<byte, short>(memoryManager.GetSpan(bufferOffset, bufferSize));
}
decodedSampleCount = PcmHelper.Decode(tempSpan, waveBufferPcm16, targetSampleStartOffset, targetSampleEndOffset, info.ChannelIndex, info.ChannelCount);
break;
case SampleFormat.PcmFloat:
ReadOnlySpan<float> waveBufferPcmFloat = ReadOnlySpan<float>.Empty;
if (waveBuffer.Buffer != 0 && waveBuffer.BufferSize != 0)
{
ulong bufferOffset = waveBuffer.Buffer + PcmHelper.GetBufferOffset<float>(targetSampleStartOffset, offset, info.ChannelCount);
int bufferSize = PcmHelper.GetBufferSize<float>(targetSampleStartOffset, targetSampleEndOffset, offset, sampleCountToDecode - y) * info.ChannelCount;
waveBufferPcmFloat = MemoryMarshal.Cast<byte, float>(memoryManager.GetSpan(bufferOffset, bufferSize));
}
decodedSampleCount = PcmHelper.Decode(tempSpan, waveBufferPcmFloat, targetSampleStartOffset, targetSampleEndOffset, info.ChannelIndex, info.ChannelCount);
break;
default:
Logger.Warning?.Print(LogClass.AudioRenderer, $"Unsupported sample format {info.SampleFormat}");
break;
}
Debug.Assert(decodedSampleCount <= sampleCountToDecode);
if (decodedSampleCount < 0)
{
Logger.Warning?.Print(LogClass.AudioRenderer, $"Decoding failed, skipping WaveBuffer");
state.MarkEndOfBufferWaveBufferProcessing(ref waveBuffer, ref waveBufferIndex, ref waveBufferConsumed, ref playedSampleCount);
decodedSampleCount = 0;
}
y += decodedSampleCount;
offset += decodedSampleCount;
playedSampleCount += (uint)decodedSampleCount;
if (offset >= targetWaveBufferSampleCount || decodedSampleCount == 0)
{
offset = 0;
if (waveBuffer.Looping)
{
state.LoopCount++;
if (waveBuffer.LoopCount >= 0)
{
if (decodedSampleCount == 0 || state.LoopCount > waveBuffer.LoopCount)
{
state.MarkEndOfBufferWaveBufferProcessing(ref waveBuffer, ref waveBufferIndex, ref waveBufferConsumed, ref playedSampleCount);
}
}
if (decodedSampleCount == 0)
{
isStarving = true;
break;
}
if (info.DecodingBehaviour.HasFlag(DecodingBehaviour.PlayedSampleCountResetWhenLooping))
{
playedSampleCount = 0;
}
}
else
{
state.MarkEndOfBufferWaveBufferProcessing(ref waveBuffer, ref waveBufferIndex, ref waveBufferConsumed, ref playedSampleCount);
}
}
}
Span<float> outputSpan = outputBuffer.Slice(i);
Span<int> outputSpanInt = MemoryMarshal.Cast<float, int>(outputSpan);
if (info.DecodingBehaviour.HasFlag(DecodingBehaviour.SkipPitchAndSampleRateConversion))
{
for (int j = 0; j < y; j++)
{
outputBuffer[j] = tempBuffer[j];
}
}
else
{
Span<short> tempSpan = tempBuffer.AsSpan().Slice(tempBufferIndex + y);
tempSpan.Slice(0, sampleCountToDecode - y).Fill(0);
ToFloat(outputBuffer, outputSpanInt, sampleCountToProcess);
ResamplerHelper.Resample(outputBuffer, tempBuffer, sampleRateRatio, ref fraction, sampleCountToProcess, info.SrcQuality, y != sourceSampleCountToProcess || info.Pitch != 1.0f);
tempBuffer.AsSpan().Slice(sampleCountToDecode, pitchMaxLength).CopyTo(state.Pitch.ToSpan());
}
i += sampleCountToProcess;
}
Debug.Assert(sourceSampleCountToProcess == i || !isStarving);
state.WaveBufferConsumed = waveBufferConsumed;
state.Offset = offset;
state.PlayedSampleCount = playedSampleCount;
state.WaveBufferIndex = (uint)waveBufferIndex;
state.Fraction = fraction;
}
ArrayPool<short>.Shared.Return(tempBuffer);
}
private static void ToFloatAvx(Span<float> output, ReadOnlySpan<int> input, int sampleCount)
{
ReadOnlySpan<Vector256<int>> inputVec = MemoryMarshal.Cast<int, Vector256<int>>(input);
Span<Vector256<float>> outputVec = MemoryMarshal.Cast<float, Vector256<float>>(output);
int sisdStart = inputVec.Length * 8;
for (int i = 0; i < inputVec.Length; i++)
{
outputVec[i] = Avx.ConvertToVector256Single(inputVec[i]);
}
for (int i = sisdStart; i < sampleCount; i++)
{
output[i] = input[i];
}
}
private static void ToFloatSse2(Span<float> output, ReadOnlySpan<int> input, int sampleCount)
{
ReadOnlySpan<Vector128<int>> inputVec = MemoryMarshal.Cast<int, Vector128<int>>(input);
Span<Vector128<float>> outputVec = MemoryMarshal.Cast<float, Vector128<float>>(output);
int sisdStart = inputVec.Length * 4;
for (int i = 0; i < inputVec.Length; i++)
{
outputVec[i] = Sse2.ConvertToVector128Single(inputVec[i]);
}
for (int i = sisdStart; i < sampleCount; i++)
{
output[i] = input[i];
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void ToFloatSlow(Span<float> output, ReadOnlySpan<int> input, int sampleCount)
{
for (int i = 0; i < sampleCount; i++)
{
output[i] = input[i];
}
}
public static void ToFloat(Span<float> output, ReadOnlySpan<int> input, int sampleCount)
{
if (Avx.IsSupported)
{
ToFloatAvx(output, input, sampleCount);
}
else if (Sse2.IsSupported)
{
ToFloatSse2(output, input, sampleCount);
}
else
{
ToFloatSlow(output, input, sampleCount);
}
}
public static void ToIntAvx(Span<int> output, ReadOnlySpan<float> input, int sampleCount)
{
ReadOnlySpan<Vector256<float>> inputVec = MemoryMarshal.Cast<float, Vector256<float>>(input);
Span<Vector256<int>> outputVec = MemoryMarshal.Cast<int, Vector256<int>>(output);
int sisdStart = inputVec.Length * 8;
for (int i = 0; i < inputVec.Length; i++)
{
outputVec[i] = Avx.ConvertToVector256Int32(inputVec[i]);
}
for (int i = sisdStart; i < sampleCount; i++)
{
output[i] = (int)input[i];
}
}
public static void ToIntSse2(Span<int> output, ReadOnlySpan<float> input, int sampleCount)
{
ReadOnlySpan<Vector128<float>> inputVec = MemoryMarshal.Cast<float, Vector128<float>>(input);
Span<Vector128<int>> outputVec = MemoryMarshal.Cast<int, Vector128<int>>(output);
int sisdStart = inputVec.Length * 4;
for (int i = 0; i < inputVec.Length; i++)
{
outputVec[i] = Avx.ConvertToVector128Int32(inputVec[i]);
}
for (int i = sisdStart; i < sampleCount; i++)
{
output[i] = (int)input[i];
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void ToIntSlow(Span<int> output, ReadOnlySpan<float> input, int sampleCount)
{
for (int i = 0; i < sampleCount; i++)
{
output[i] = (int)input[i];
}
}
public static void ToInt(Span<int> output, ReadOnlySpan<float> input, int sampleCount)
{
if (Avx.IsSupported)
{
ToIntAvx(output, input, sampleCount);
}
else if (Sse2.IsSupported)
{
ToIntSse2(output, input, sampleCount);
}
else
{
ToIntSlow(output, input, sampleCount);
}
}
}
}