0
0
Fork 0
This repository has been archived on 2024-10-12. You can view files and clone it, but cannot push or open issues or pull requests.
ryujinx-final/Ryujinx.Graphics.Gpu/Engine/GPFifo/GPFifoDevice.cs
riperiperi a1f77a5b6a
Implement lazy flush-on-read for Buffers (SSBO/Copy) (#1790)
* Initial implementation of buffer flush (VERY WIP)

* Host shaders need to be rebuilt for the SSBO write flag.

* New approach with reserved regions and gl sync

* Fix a ton of buffer issues.

* Remove unused buffer unmapped behaviour

* Revert "Remove unused buffer unmapped behaviour"

This reverts commit f1700e52fb8760180ac5e0987a07d409d1e70ece.

* Delete modified ranges on unmap

Fixes potential crashes in Super Smash Bros, where a previously modified range could lie on either side of an unmap.

* Cache some more delegates.

* Dispose Sync on Close

* Also create host sync for GPFifo syncpoint increment.

* Copy buffer optimization, add docs

* Fix race condition with OpenGL Sync

* Enable read tracking on CommandBuffer, insert syncpoint on WaitForIdle

* Performance: Only flush individual pages of SSBO at a time

This avoids flushing large amounts of data when only a small amount is actually used.

* Signal Modified rather than flushing after clear

* Fix some docs and code style.

* Introduce a new test for tracking memory protection.

Sucessfully demonstrates that the bug causing write protection to be cleared by a read action has been fixed. (these tests fail on master)

* Address Comments

* Add host sync for SetReference

This ensures that any indirect draws will correctly flush any related buffer data written before them. Fixes some flashing and misplaced world geometry in MH rise.

* Make PageAlign static

* Re-enable read tracking, for reads.
2021-01-17 17:08:06 -03:00

200 lines
6.2 KiB
C#

using System;
using System.Collections.Concurrent;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
/// <summary>
/// Represents a GPU General Purpose FIFO device.
/// </summary>
public sealed class GPFifoDevice : IDisposable
{
/// <summary>
/// Indicates if the command buffer has pre-fetch enabled.
/// </summary>
private enum CommandBufferType
{
Prefetch,
NoPrefetch
}
/// <summary>
/// Command buffer data.
/// </summary>
private struct CommandBuffer
{
/// <summary>
/// The type of the command buffer.
/// </summary>
public CommandBufferType Type;
/// <summary>
/// Fetched data.
/// </summary>
public int[] Words;
/// <summary>
/// The GPFIFO entry address (used in <see cref="CommandBufferType.NoPrefetch"/> mode).
/// </summary>
public ulong EntryAddress;
/// <summary>
/// The count of entries inside this GPFIFO entry.
/// </summary>
public uint EntryCount;
/// <summary>
/// Fetch the command buffer.
/// </summary>
public void Fetch(GpuContext context)
{
if (Words == null)
{
Words = MemoryMarshal.Cast<byte, int>(context.MemoryManager.GetSpan(EntryAddress, (int)EntryCount * 4, true)).ToArray();
}
}
}
private readonly ConcurrentQueue<CommandBuffer> _commandBufferQueue;
private CommandBuffer _currentCommandBuffer;
private readonly bool _ibEnable;
private readonly GpuContext _context;
private readonly AutoResetEvent _event;
private readonly GPFifoProcessor _processor;
private bool _interrupt;
/// <summary>
/// Creates a new instance of the GPU General Purpose FIFO device.
/// </summary>
/// <param name="context">GPU context that the GPFIFO belongs to</param>
internal GPFifoDevice(GpuContext context)
{
_commandBufferQueue = new ConcurrentQueue<CommandBuffer>();
_ibEnable = true;
_context = context;
_event = new AutoResetEvent(false);
_processor = new GPFifoProcessor(context);
}
/// <summary>
/// Signal the FIFO that there are new entries to process.
/// </summary>
public void SignalNewEntries()
{
_event.Set();
}
/// <summary>
/// Push a GPFIFO entry in the form of a prefetched command buffer.
/// It is intended to be used by nvservices to handle special cases.
/// </summary>
/// <param name="commandBuffer">The command buffer containing the prefetched commands</param>
public void PushHostCommandBuffer(int[] commandBuffer)
{
_commandBufferQueue.Enqueue(new CommandBuffer
{
Type = CommandBufferType.Prefetch,
Words = commandBuffer,
EntryAddress = ulong.MaxValue,
EntryCount = (uint)commandBuffer.Length
});
}
/// <summary>
/// Create a CommandBuffer from a GPFIFO entry.
/// </summary>
/// <param name="entry">The GPFIFO entry</param>
/// <returns>A new CommandBuffer based on the GPFIFO entry</returns>
private CommandBuffer CreateCommandBuffer(GPEntry entry)
{
CommandBufferType type = CommandBufferType.Prefetch;
if (entry.Entry1Sync == Entry1Sync.Wait)
{
type = CommandBufferType.NoPrefetch;
}
ulong startAddress = ((ulong)entry.Entry0Get << 2) | ((ulong)entry.Entry1GetHi << 32);
return new CommandBuffer
{
Type = type,
Words = null,
EntryAddress = startAddress,
EntryCount = (uint)entry.Entry1Length
};
}
/// <summary>
/// Pushes GPFIFO entries.
/// </summary>
/// <param name="entries">GPFIFO entries</param>
public void PushEntries(ReadOnlySpan<ulong> entries)
{
bool beforeBarrier = true;
for (int index = 0; index < entries.Length; index++)
{
ulong entry = entries[index];
CommandBuffer commandBuffer = CreateCommandBuffer(Unsafe.As<ulong, GPEntry>(ref entry));
if (beforeBarrier && commandBuffer.Type == CommandBufferType.Prefetch)
{
commandBuffer.Fetch(_context);
}
if (commandBuffer.Type == CommandBufferType.NoPrefetch)
{
beforeBarrier = false;
}
_commandBufferQueue.Enqueue(commandBuffer);
}
}
/// <summary>
/// Waits until commands are pushed to the FIFO.
/// </summary>
/// <returns>True if commands were received, false if wait timed out</returns>
public bool WaitForCommands()
{
return !_commandBufferQueue.IsEmpty || (_event.WaitOne(8) && !_commandBufferQueue.IsEmpty);
}
/// <summary>
/// Processes commands pushed to the FIFO.
/// </summary>
public void DispatchCalls()
{
while (_ibEnable && !_interrupt && _commandBufferQueue.TryDequeue(out CommandBuffer entry))
{
_currentCommandBuffer = entry;
_currentCommandBuffer.Fetch(_context);
_processor.Process(_currentCommandBuffer.Words);
}
_interrupt = false;
}
/// <summary>
/// Interrupts command processing. This will break out of the DispatchCalls loop.
/// </summary>
public void Interrupt()
{
_interrupt = true;
}
/// <summary>
/// Disposes of resources used for GPFifo command processing.
/// </summary>
public void Dispose() => _event.Dispose();
}
}