0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2025-01-24 21:21:58 +00:00

New GPFifo and fast guest constant buffer updates (#1400)

* Add new structures from official docs, start migrating GPFifo

* Finish migration to new GPFifo processor

* Implement fast constant buffer data upload

* Migrate to new GPFifo class

* XML docs
This commit is contained in:
gdkchan 2020-07-23 23:53:25 -03:00 committed by GitHub
parent 3c1f220c5e
commit 5a7df48975
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
20 changed files with 958 additions and 702 deletions

View file

@ -90,14 +90,12 @@ namespace Ryujinx.Graphics.Device
{ {
int alignedOffset = Align(offset); int alignedOffset = Align(offset);
GetRef<int>(alignedOffset) = data;
if (_writeCallbacks.TryGetValue(alignedOffset, out Action<int> write)) if (_writeCallbacks.TryGetValue(alignedOffset, out Action<int> write))
{ {
write(data); write(data);
} }
else
{
GetRef<int>(alignedOffset) = data;
}
} }
} }

View file

@ -1,316 +0,0 @@
using System;
using System.Collections.Concurrent;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu
{
/// <summary>
/// GPU DMA pusher, used to push commands to the GPU.
/// </summary>
public class DmaPusher
{
private ConcurrentQueue<CommandBuffer> _commandBufferQueue;
private enum CommandBufferType
{
Prefetch,
NoPrefetch,
}
private struct CommandBuffer
{
/// <summary>
/// The type of the command buffer.
/// </summary>
public CommandBufferType Type;
/// <summary>
/// Fetched data.
/// </summary>
public int[] Words;
/// <summary>
/// The GPFIFO entry address. (used in NoPrefetch mode)
/// </summary>
public ulong EntryAddress;
/// <summary>
/// The count of entries inside this GPFIFO entry.
/// </summary>
public uint EntryCount;
/// <summary>
/// Fetch the command buffer.
/// </summary>
public void Fetch(GpuContext context)
{
if (Words == null)
{
Words = MemoryMarshal.Cast<byte, int>(context.MemoryAccessor.GetSpan(EntryAddress, (int)EntryCount * 4)).ToArray();
}
}
/// <summary>
/// Read inside the command buffer.
/// </summary>
/// <param name="context">The GPU context</param>
/// <param name="index">The index inside the command buffer</param>
/// <returns>The value read</returns>
public int ReadAt(GpuContext context, int index)
{
return Words[index];
}
}
private CommandBuffer _currentCommandBuffer;
private int _wordsPosition;
/// <summary>
/// Internal GPFIFO state.
/// </summary>
private struct DmaState
{
public int Method;
public int SubChannel;
public int MethodCount;
public bool NonIncrementing;
public bool IncrementOnce;
public int LengthPending;
}
private DmaState _state;
private bool _ibEnable;
private GpuContext _context;
private AutoResetEvent _event;
/// <summary>
/// Creates a new instance of the GPU DMA pusher.
/// </summary>
/// <param name="context">GPU context that the pusher belongs to</param>
internal DmaPusher(GpuContext context)
{
_context = context;
_ibEnable = true;
_commandBufferQueue = new ConcurrentQueue<CommandBuffer>();
_event = new AutoResetEvent(false);
}
/// <summary>
/// Signal the pusher that there are new entries to process.
/// </summary>
public void SignalNewEntries()
{
_event.Set();
}
/// <summary>
/// Push a GPFIFO entry in the form of a prefetched command buffer.
/// It is intended to be used by nvservices to handle special cases.
/// </summary>
/// <param name="commandBuffer">The command buffer containing the prefetched commands</param>
public void PushHostCommandBuffer(int[] commandBuffer)
{
_commandBufferQueue.Enqueue(new CommandBuffer
{
Type = CommandBufferType.Prefetch,
Words = commandBuffer,
EntryAddress = ulong.MaxValue,
EntryCount = (uint)commandBuffer.Length
});
}
/// <summary>
/// Create a CommandBuffer from a GPFIFO entry.
/// </summary>
/// <param name="entry">The GPFIFO entry</param>
/// <returns>A new CommandBuffer based on the GPFIFO entry</returns>
private CommandBuffer CreateCommandBuffer(ulong entry)
{
ulong length = (entry >> 42) & 0x1fffff;
ulong startAddress = entry & 0xfffffffffc;
bool noPrefetch = (entry & (1UL << 63)) != 0;
CommandBufferType type = CommandBufferType.Prefetch;
if (noPrefetch)
{
type = CommandBufferType.NoPrefetch;
}
return new CommandBuffer
{
Type = type,
Words = null,
EntryAddress = startAddress,
EntryCount = (uint)length
};
}
/// <summary>
/// Pushes GPFIFO entries.
/// </summary>
/// <param name="entries">GPFIFO entries</param>
public void PushEntries(ReadOnlySpan<ulong> entries)
{
bool beforeBarrier = true;
foreach (ulong entry in entries)
{
CommandBuffer commandBuffer = CreateCommandBuffer(entry);
if (beforeBarrier && commandBuffer.Type == CommandBufferType.Prefetch)
{
commandBuffer.Fetch(_context);
}
if (commandBuffer.Type == CommandBufferType.NoPrefetch)
{
beforeBarrier = false;
}
_commandBufferQueue.Enqueue(commandBuffer);
}
}
/// <summary>
/// Waits until commands are pushed to the FIFO.
/// </summary>
/// <returns>True if commands were received, false if wait timed out</returns>
public bool WaitForCommands()
{
return _event.WaitOne(8);
}
/// <summary>
/// Processes commands pushed to the FIFO.
/// </summary>
public void DispatchCalls()
{
while (Step());
}
/// <summary>
/// Processes a single command on the FIFO.
/// </summary>
/// <returns>True if the FIFO still has commands to be processed, false otherwise</returns>
private bool Step()
{
if (_wordsPosition != _currentCommandBuffer.EntryCount)
{
int word = _currentCommandBuffer.ReadAt(_context, _wordsPosition++);
if (_state.LengthPending != 0)
{
_state.LengthPending = 0;
_state.MethodCount = word & 0xffffff;
}
else if (_state.MethodCount != 0)
{
CallMethod(word);
if (!_state.NonIncrementing)
{
_state.Method++;
}
if (_state.IncrementOnce)
{
_state.NonIncrementing = true;
}
_state.MethodCount--;
}
else
{
int submissionMode = (word >> 29) & 7;
switch (submissionMode)
{
case 1:
// Incrementing.
SetNonImmediateState(word);
_state.NonIncrementing = false;
_state.IncrementOnce = false;
break;
case 3:
// Non-incrementing.
SetNonImmediateState(word);
_state.NonIncrementing = true;
_state.IncrementOnce = false;
break;
case 4:
// Immediate.
_state.Method = (word >> 0) & 0x1fff;
_state.SubChannel = (word >> 13) & 7;
_state.NonIncrementing = true;
_state.IncrementOnce = false;
CallMethod((word >> 16) & 0x1fff);
break;
case 5:
// Increment-once.
SetNonImmediateState(word);
_state.NonIncrementing = false;
_state.IncrementOnce = true;
break;
}
}
}
else if (_ibEnable && _commandBufferQueue.TryDequeue(out CommandBuffer entry))
{
_currentCommandBuffer = entry;
_wordsPosition = 0;
_currentCommandBuffer.Fetch(_context);
}
else
{
return false;
}
return true;
}
/// <summary>
/// Sets current non-immediate method call state.
/// </summary>
/// <param name="word">Compressed method word</param>
private void SetNonImmediateState(int word)
{
_state.Method = (word >> 0) & 0x1fff;
_state.SubChannel = (word >> 13) & 7;
_state.MethodCount = (word >> 16) & 0x1fff;
}
/// <summary>
/// Forwards the method call to GPU engines.
/// </summary>
/// <param name="argument">Call argument</param>
private void CallMethod(int argument)
{
_context.Fifo.CallMethod(new MethodParams(
_state.Method,
argument,
_state.SubChannel,
_state.MethodCount));
}
}
}

View file

@ -0,0 +1,39 @@
// This file was auto-generated from NVIDIA official Maxwell definitions.
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
enum TertOp
{
Grp0IncMethod = 0,
Grp0SetSubDevMask = 1,
Grp0StoreSubDevMask = 2,
Grp0UseSubDevMask = 3,
Grp2NonIncMethod = 0
}
enum SecOp
{
Grp0UseTert = 0,
IncMethod = 1,
Grp2UseTert = 2,
NonIncMethod = 3,
ImmdDataMethod = 4,
OneInc = 5,
Reserved6 = 6,
EndPbSegment = 7
}
struct CompressedMethod
{
public uint Method;
public int MethodAddressOld => (int)((Method >> 2) & 0x7FF);
public int MethodAddress => (int)((Method >> 0) & 0xFFF);
public int SubdeviceMask => (int)((Method >> 4) & 0xFFF);
public int MethodSubchannel => (int)((Method >> 13) & 0x7);
public TertOp TertOp => (TertOp)((Method >> 16) & 0x3);
public int MethodCountOld => (int)((Method >> 18) & 0x7FF);
public int MethodCount => (int)((Method >> 16) & 0x1FFF);
public int ImmdData => (int)((Method >> 16) & 0x1FFF);
public SecOp SecOp => (SecOp)((Method >> 29) & 0x7);
}
}

View file

@ -0,0 +1,51 @@
// This file was auto-generated from NVIDIA official Maxwell definitions.
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
enum Entry0Fetch
{
Unconditional = 0,
Conditional = 1,
}
enum Entry1Priv
{
User = 0,
Kernel = 1,
}
enum Entry1Level
{
Main = 0,
Subroutine = 1,
}
enum Entry1Sync
{
Proceed = 0,
Wait = 1,
}
enum Entry1Opcode
{
Nop = 0,
Illegal = 1,
Crc = 2,
PbCrc = 3,
}
struct GPEntry
{
public uint Entry0;
public Entry0Fetch Entry0Fetch => (Entry0Fetch)((Entry0 >> 0) & 0x1);
public int Entry0Get => (int)((Entry0 >> 2) & 0x3FFFFFFF);
public int Entry0Operand => (int)(Entry0);
public uint Entry1;
public int Entry1GetHi => (int)((Entry1 >> 0) & 0xFF);
public Entry1Priv Entry1Priv => (Entry1Priv)((Entry1 >> 8) & 0x1);
public Entry1Level Entry1Level => (Entry1Level)((Entry1 >> 9) & 0x1);
public int Entry1Length => (int)((Entry1 >> 10) & 0x1FFFFF);
public Entry1Sync Entry1Sync => (Entry1Sync)((Entry1 >> 31) & 0x1);
public Entry1Opcode Entry1Opcode => (Entry1Opcode)((Entry1 >> 0) & 0xFF);
}
}

View file

@ -0,0 +1,214 @@
using Ryujinx.Graphics.Device;
using Ryujinx.Graphics.Gpu.Engine.MME;
using Ryujinx.Graphics.Gpu.State;
using System;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
/// <summary>
/// Represents a GPU General Purpose FIFO class.
/// </summary>
class GPFifoClass : IDeviceState
{
private readonly GpuContext _context;
private readonly DeviceState<GPFifoClassState> _state;
private const int MacrosCount = 0x80;
// Note: The size of the macro memory is unknown, we just make
// a guess here and use 256kb as the size. Increase if needed.
private const int MacroCodeSize = 256 * 256;
private readonly Macro[] _macros;
private readonly int[] _macroCode;
/// <summary>
/// MME Shadow RAM Control.
/// </summary>
public ShadowRamControl ShadowCtrl { get; private set; }
/// <summary>
/// Creates a new instance of the GPU General Purpose FIFO class.
/// </summary>
/// <param name="context">GPU context</param>
public GPFifoClass(GpuContext context)
{
_context = context;
_state = new DeviceState<GPFifoClassState>(new Dictionary<string, RwCallback>
{
{ nameof(GPFifoClassState.Semaphored), new RwCallback(Semaphored, null) },
{ nameof(GPFifoClassState.Syncpointb), new RwCallback(Syncpointb, null) },
{ nameof(GPFifoClassState.WaitForIdle), new RwCallback(WaitForIdle, null) },
{ nameof(GPFifoClassState.LoadMmeInstructionRam), new RwCallback(LoadMmeInstructionRam, null) },
{ nameof(GPFifoClassState.LoadMmeStartAddressRam), new RwCallback(LoadMmeStartAddressRam, null) },
{ nameof(GPFifoClassState.SetMmeShadowRamControl), new RwCallback(SetMmeShadowRamControl, null) }
});
_macros = new Macro[MacrosCount];
_macroCode = new int[MacroCodeSize];
}
/// <summary>
/// Reads data from the class registers.
/// </summary>
/// <param name="offset">Register byte offset</param>
/// <returns>Data at the specified offset</returns>
public int Read(int offset) => _state.Read(offset);
/// <summary>
/// Writes data to the class registers.
/// </summary>
/// <param name="offset">Register byte offset</param>
/// <param name="data">Data to be written</param>
public void Write(int offset, int data) => _state.Write(offset, data);
/// <summary>
/// Writes a GPU counter to guest memory.
/// </summary>
/// <param name="argument">Method call argument</param>
public void Semaphored(int argument)
{
ulong address = ((ulong)_state.State.SemaphorebOffsetLower << 2) |
((ulong)_state.State.SemaphoreaOffsetUpper << 32);
int value = _state.State.SemaphorecPayload;
SemaphoredOperation operation = _state.State.SemaphoredOperation;
// TODO: Acquire operations (Wait), interrupts for invalid combinations.
if (operation == SemaphoredOperation.Release)
{
_context.MemoryAccessor.Write(address, value);
}
else if (operation == SemaphoredOperation.Reduction)
{
bool signed = _state.State.SemaphoredFormat == SemaphoredFormat.Signed;
int mem = _context.MemoryAccessor.Read<int>(address);
switch (_state.State.SemaphoredReduction)
{
case SemaphoredReduction.Min:
value = signed ? Math.Min(mem, value) : (int)Math.Min((uint)mem, (uint)value);
break;
case SemaphoredReduction.Max:
value = signed ? Math.Max(mem, value) : (int)Math.Max((uint)mem, (uint)value);
break;
case SemaphoredReduction.Xor:
value ^= mem;
break;
case SemaphoredReduction.And:
value &= mem;
break;
case SemaphoredReduction.Or:
value |= mem;
break;
case SemaphoredReduction.Add:
value += mem;
break;
case SemaphoredReduction.Inc:
value = (uint)mem < (uint)value ? mem + 1 : 0;
break;
case SemaphoredReduction.Dec:
value = (uint)mem > 0 && (uint)mem <= (uint)value ? mem - 1 : value;
break;
}
_context.MemoryAccessor.Write(address, value);
}
}
/// <summary>
/// Apply a fence operation on a syncpoint.
/// </summary>
/// <param name="argument">Method call argument</param>
public void Syncpointb(int argument)
{
SyncpointbOperation operation = _state.State.SyncpointbOperation;
uint syncpointId = (uint)_state.State.SyncpointbSyncptIndex;
if (operation == SyncpointbOperation.Wait)
{
uint threshold = (uint)_state.State.SyncpointaPayload;
_context.Synchronization.WaitOnSyncpoint(syncpointId, threshold, Timeout.InfiniteTimeSpan);
}
else if (operation == SyncpointbOperation.Incr)
{
_context.Synchronization.IncrementSyncpoint(syncpointId);
}
_context.AdvanceSequence();
}
/// <summary>
/// Waits for the GPU to be idle.
/// </summary>
/// <param name="argument">Method call argument</param>
public void WaitForIdle(int argument)
{
_context.Methods.PerformDeferredDraws();
_context.Renderer.Pipeline.Barrier();
}
/// <summary>
/// Send macro code/data to the MME
/// </summary>
/// <param name="argument">Method call argument</param>
public void LoadMmeInstructionRam(int argument)
{
_macroCode[_state.State.LoadMmeInstructionRamPointer++] = argument;
}
/// <summary>
/// Bind a macro index to a position for the MME
/// </summary>
/// <param name="argument">Method call argument</param>
public void LoadMmeStartAddressRam(int argument)
{
_macros[_state.State.LoadMmeStartAddressRamPointer++] = new Macro(argument);
}
/// <summary>
/// Change the shadow RAM setting
/// </summary>
/// <param name="argument">Method call argument</param>
public void SetMmeShadowRamControl(int argument)
{
ShadowCtrl = (ShadowRamControl)argument;
}
/// <summary>
/// Pushes an argument to a macro.
/// </summary>
/// <param name="index">Index of the macro</param>
/// <param name="argument">Argument to be pushed to the macro</param>
public void MmePushArgument(int index, int argument)
{
_macros[index].PushArgument(argument);
}
/// <summary>
/// Prepares a macro for execution.
/// </summary>
/// <param name="index">Index of the macro</param>
/// <param name="argument">Initial argument passed to the macro</param>
public void MmeStart(int index, int argument)
{
_macros[index].StartExecution(argument);
}
/// <summary>
/// Executes a macro.
/// </summary>
/// <param name="index">Index of the macro</param>
/// <param name="state">Current GPU state</param>
public void CallMme(int index, GpuState state)
{
_macros[index].Execute(_macroCode, ShadowCtrl, state);
}
}
}

View file

@ -0,0 +1,186 @@
// This file was auto-generated from NVIDIA official Maxwell definitions.
using Ryujinx.Common.Memory;
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
enum SemaphoredOperation
{
Acquire = 1,
Release = 2,
AcqGeq = 4,
AcqAnd = 8,
Reduction = 16
}
enum SemaphoredAcquireSwitch
{
Disabled = 0,
Enabled = 1
}
enum SemaphoredReleaseWfi
{
En = 0,
Dis = 1
}
enum SemaphoredReleaseSize
{
SixteenBytes = 0,
FourBytes = 1
}
enum SemaphoredReduction
{
Min = 0,
Max = 1,
Xor = 2,
And = 3,
Or = 4,
Add = 5,
Inc = 6,
Dec = 7
}
enum SemaphoredFormat
{
Signed = 0,
Unsigned = 1
}
enum MemOpCTlbInvalidatePdb
{
One = 0,
All = 1
}
enum MemOpCTlbInvalidateGpc
{
Enable = 0,
Disable = 1
}
enum MemOpCTlbInvalidateTarget
{
VidMem = 0,
SysMemCoherent = 2,
SysMemNoncoherent = 3
}
enum MemOpDOperation
{
Membar = 5,
MmuTlbInvalidate = 9,
L2PeermemInvalidate = 13,
L2SysmemInvalidate = 14,
L2CleanComptags = 15,
L2FlushDirty = 16
}
enum SyncpointbOperation
{
Wait = 0,
Incr = 1
}
enum SyncpointbWaitSwitch
{
Dis = 0,
En = 1
}
enum WfiScope
{
CurrentScgType = 0,
All = 1
}
enum YieldOp
{
Nop = 0,
PbdmaTimeslice = 1,
RunlistTimeslice = 2,
Tsg = 3
}
struct GPFifoClassState
{
public uint SetObject;
public int SetObjectNvclass => (int)((SetObject >> 0) & 0xFFFF);
public int SetObjectEngine => (int)((SetObject >> 16) & 0x1F);
public uint Illegal;
public int IllegalHandle => (int)(Illegal);
public uint Nop;
public int NopHandle => (int)(Nop);
public uint Reserved0C;
public uint Semaphorea;
public int SemaphoreaOffsetUpper => (int)((Semaphorea >> 0) & 0xFF);
public uint Semaphoreb;
public int SemaphorebOffsetLower => (int)((Semaphoreb >> 2) & 0x3FFFFFFF);
public uint Semaphorec;
public int SemaphorecPayload => (int)(Semaphorec);
public uint Semaphored;
public SemaphoredOperation SemaphoredOperation => (SemaphoredOperation)((Semaphored >> 0) & 0x1F);
public SemaphoredAcquireSwitch SemaphoredAcquireSwitch => (SemaphoredAcquireSwitch)((Semaphored >> 12) & 0x1);
public SemaphoredReleaseWfi SemaphoredReleaseWfi => (SemaphoredReleaseWfi)((Semaphored >> 20) & 0x1);
public SemaphoredReleaseSize SemaphoredReleaseSize => (SemaphoredReleaseSize)((Semaphored >> 24) & 0x1);
public SemaphoredReduction SemaphoredReduction => (SemaphoredReduction)((Semaphored >> 27) & 0xF);
public SemaphoredFormat SemaphoredFormat => (SemaphoredFormat)((Semaphored >> 31) & 0x1);
public uint NonStallInterrupt;
public int NonStallInterruptHandle => (int)(NonStallInterrupt);
public uint FbFlush;
public int FbFlushHandle => (int)(FbFlush);
public uint Reserved28;
public uint Reserved2C;
public uint MemOpC;
public int MemOpCOperandLow => (int)((MemOpC >> 2) & 0x3FFFFFFF);
public MemOpCTlbInvalidatePdb MemOpCTlbInvalidatePdb => (MemOpCTlbInvalidatePdb)((MemOpC >> 0) & 0x1);
public MemOpCTlbInvalidateGpc MemOpCTlbInvalidateGpc => (MemOpCTlbInvalidateGpc)((MemOpC >> 1) & 0x1);
public MemOpCTlbInvalidateTarget MemOpCTlbInvalidateTarget => (MemOpCTlbInvalidateTarget)((MemOpC >> 10) & 0x3);
public int MemOpCTlbInvalidateAddrLo => (int)((MemOpC >> 12) & 0xFFFFF);
public uint MemOpD;
public int MemOpDOperandHigh => (int)((MemOpD >> 0) & 0xFF);
public MemOpDOperation MemOpDOperation => (MemOpDOperation)((MemOpD >> 27) & 0x1F);
public int MemOpDTlbInvalidateAddrHi => (int)((MemOpD >> 0) & 0xFF);
public uint Reserved38;
public uint Reserved3C;
public uint Reserved40;
public uint Reserved44;
public uint Reserved48;
public uint Reserved4C;
public uint SetReference;
public int SetReferenceCount => (int)(SetReference);
public uint Reserved54;
public uint Reserved58;
public uint Reserved5C;
public uint Reserved60;
public uint Reserved64;
public uint Reserved68;
public uint Reserved6C;
public uint Syncpointa;
public int SyncpointaPayload => (int)(Syncpointa);
public uint Syncpointb;
public SyncpointbOperation SyncpointbOperation => (SyncpointbOperation)((Syncpointb >> 0) & 0x1);
public SyncpointbWaitSwitch SyncpointbWaitSwitch => (SyncpointbWaitSwitch)((Syncpointb >> 4) & 0x1);
public int SyncpointbSyncptIndex => (int)((Syncpointb >> 8) & 0xFFF);
public uint Wfi;
public WfiScope WfiScope => (WfiScope)((Wfi >> 0) & 0x1);
public uint CrcCheck;
public int CrcCheckValue => (int)(CrcCheck);
public uint Yield;
public YieldOp YieldOp => (YieldOp)((Yield >> 0) & 0x3);
// TODO: Eventually move this to per-engine state.
public Array31<uint> Reserved84;
public uint NoOperation;
public uint SetNotifyA;
public uint SetNotifyB;
public uint Notify;
public uint WaitForIdle;
public uint LoadMmeInstructionRamPointer;
public uint LoadMmeInstructionRam;
public uint LoadMmeStartAddressRamPointer;
public uint LoadMmeStartAddressRam;
public uint SetMmeShadowRamControl;
}
}

View file

@ -0,0 +1,188 @@
using System;
using System.Collections.Concurrent;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
/// <summary>
/// Represents a GPU General Purpose FIFO device.
/// </summary>
public sealed class GPFifoDevice : IDisposable
{
/// <summary>
/// Indicates if the command buffer has pre-fetch enabled.
/// </summary>
private enum CommandBufferType
{
Prefetch,
NoPrefetch
}
/// <summary>
/// Command buffer data.
/// </summary>
private struct CommandBuffer
{
/// <summary>
/// The type of the command buffer.
/// </summary>
public CommandBufferType Type;
/// <summary>
/// Fetched data.
/// </summary>
public int[] Words;
/// <summary>
/// The GPFIFO entry address (used in <see cref="CommandBufferType.NoPrefetch"/> mode).
/// </summary>
public ulong EntryAddress;
/// <summary>
/// The count of entries inside this GPFIFO entry.
/// </summary>
public uint EntryCount;
/// <summary>
/// Fetch the command buffer.
/// </summary>
public void Fetch(GpuContext context)
{
if (Words == null)
{
Words = MemoryMarshal.Cast<byte, int>(context.MemoryAccessor.GetSpan(EntryAddress, (int)EntryCount * 4)).ToArray();
}
}
}
private readonly ConcurrentQueue<CommandBuffer> _commandBufferQueue;
private CommandBuffer _currentCommandBuffer;
private readonly bool _ibEnable;
private readonly GpuContext _context;
private readonly AutoResetEvent _event;
private readonly GPFifoProcessor _processor;
/// <summary>
/// Creates a new instance of the GPU General Purpose FIFO device.
/// </summary>
/// <param name="context">GPU context that the GPFIFO belongs to</param>
internal GPFifoDevice(GpuContext context)
{
_commandBufferQueue = new ConcurrentQueue<CommandBuffer>();
_ibEnable = true;
_context = context;
_event = new AutoResetEvent(false);
_processor = new GPFifoProcessor(context);
}
/// <summary>
/// Signal the FIFO that there are new entries to process.
/// </summary>
public void SignalNewEntries()
{
_event.Set();
}
/// <summary>
/// Push a GPFIFO entry in the form of a prefetched command buffer.
/// It is intended to be used by nvservices to handle special cases.
/// </summary>
/// <param name="commandBuffer">The command buffer containing the prefetched commands</param>
public void PushHostCommandBuffer(int[] commandBuffer)
{
_commandBufferQueue.Enqueue(new CommandBuffer
{
Type = CommandBufferType.Prefetch,
Words = commandBuffer,
EntryAddress = ulong.MaxValue,
EntryCount = (uint)commandBuffer.Length
});
}
/// <summary>
/// Create a CommandBuffer from a GPFIFO entry.
/// </summary>
/// <param name="entry">The GPFIFO entry</param>
/// <returns>A new CommandBuffer based on the GPFIFO entry</returns>
private CommandBuffer CreateCommandBuffer(GPEntry entry)
{
CommandBufferType type = CommandBufferType.Prefetch;
if (entry.Entry1Sync == Entry1Sync.Wait)
{
type = CommandBufferType.NoPrefetch;
}
ulong startAddress = ((ulong)entry.Entry0Get << 2) | ((ulong)entry.Entry1GetHi << 32);
return new CommandBuffer
{
Type = type,
Words = null,
EntryAddress = startAddress,
EntryCount = (uint)entry.Entry1Length
};
}
/// <summary>
/// Pushes GPFIFO entries.
/// </summary>
/// <param name="entries">GPFIFO entries</param>
public void PushEntries(ReadOnlySpan<ulong> entries)
{
bool beforeBarrier = true;
for (int index = 0; index < entries.Length; index++)
{
ulong entry = entries[index];
CommandBuffer commandBuffer = CreateCommandBuffer(Unsafe.As<ulong, GPEntry>(ref entry));
if (beforeBarrier && commandBuffer.Type == CommandBufferType.Prefetch)
{
commandBuffer.Fetch(_context);
}
if (commandBuffer.Type == CommandBufferType.NoPrefetch)
{
beforeBarrier = false;
}
_commandBufferQueue.Enqueue(commandBuffer);
}
}
/// <summary>
/// Waits until commands are pushed to the FIFO.
/// </summary>
/// <returns>True if commands were received, false if wait timed out</returns>
public bool WaitForCommands()
{
return _event.WaitOne(8);
}
/// <summary>
/// Processes commands pushed to the FIFO.
/// </summary>
public void DispatchCalls()
{
while (_ibEnable && _commandBufferQueue.TryDequeue(out CommandBuffer entry))
{
_currentCommandBuffer = entry;
_currentCommandBuffer.Fetch(_context);
_processor.Process(_currentCommandBuffer.Words);
}
}
/// <summary>
/// Disposes of resources used for GPFifo command processing.
/// </summary>
public void Dispose() => _event.Dispose();
}
}

View file

@ -0,0 +1,179 @@
using Ryujinx.Graphics.Gpu.State;
using System;
using System.Runtime.CompilerServices;
namespace Ryujinx.Graphics.Gpu.Engine.GPFifo
{
/// <summary>
/// Represents a GPU General Purpose FIFO command processor.
/// </summary>
class GPFifoProcessor
{
private const int MacrosCount = 0x80;
private const int MacroIndexMask = MacrosCount - 1;
private readonly GpuContext _context;
/// <summary>
/// Internal GPFIFO state.
/// </summary>
private struct DmaState
{
public int Method;
public int SubChannel;
public int MethodCount;
public bool NonIncrementing;
public bool IncrementOnce;
}
private DmaState _state;
private readonly GpuState[] _subChannels;
private readonly GPFifoClass _fifoClass;
/// <summary>
/// Creates a new instance of the GPU General Purpose FIFO command processor.
/// </summary>
/// <param name="context">GPU context</param>
public GPFifoProcessor(GpuContext context)
{
_context = context;
_fifoClass = new GPFifoClass(context);
_subChannels = new GpuState[8];
for (int index = 0; index < _subChannels.Length; index++)
{
_subChannels[index] = new GpuState();
_context.Methods.RegisterCallbacks(_subChannels[index]);
}
}
/// <summary>
/// Processes a command buffer.
/// </summary>
/// <param name="commandBuffer">Command buffer</param>
public void Process(ReadOnlySpan<int> commandBuffer)
{
for (int index = 0; index < commandBuffer.Length; index++)
{
int command = commandBuffer[index];
if (_state.MethodCount != 0)
{
Send(new MethodParams(_state.Method, command, _state.SubChannel, _state.MethodCount));
if (!_state.NonIncrementing)
{
_state.Method++;
}
if (_state.IncrementOnce)
{
_state.NonIncrementing = true;
}
_state.MethodCount--;
}
else
{
CompressedMethod meth = Unsafe.As<int, CompressedMethod>(ref command);
if (TryFastUniformBufferUpdate(meth, commandBuffer, index))
{
index += meth.MethodCount;
continue;
}
switch (meth.SecOp)
{
case SecOp.IncMethod:
case SecOp.NonIncMethod:
case SecOp.OneInc:
_state.Method = meth.MethodAddress;
_state.SubChannel = meth.MethodSubchannel;
_state.MethodCount = meth.MethodCount;
_state.IncrementOnce = meth.SecOp == SecOp.OneInc;
_state.NonIncrementing = meth.SecOp == SecOp.NonIncMethod;
break;
case SecOp.ImmdDataMethod:
Send(new MethodParams(meth.MethodAddress, meth.ImmdData, meth.MethodSubchannel, 1));
break;
}
}
}
}
/// <summary>
/// Tries to perform a fast constant buffer data update.
/// If successful, all data will be copied at once, and <see cref="CompressedMethod.MethodCount"/> + 1
/// command buffer entries will be consumed.
/// </summary>
/// <param name="meth">Compressed method to be checked</param>
/// <param name="commandBuffer">Command buffer where <paramref name="meth"/> is contained</param>
/// <param name="offset">Offset at <paramref name="commandBuffer"/> where <paramref name="meth"/> is located</param>
/// <returns>True if the fast copy was successful, false otherwise</returns>
private bool TryFastUniformBufferUpdate(CompressedMethod meth, ReadOnlySpan<int> commandBuffer, int offset)
{
int availableCount = commandBuffer.Length - offset;
if (meth.MethodCount < availableCount &&
meth.SecOp == SecOp.NonIncMethod &&
meth.MethodAddress == (int)MethodOffset.UniformBufferUpdateData)
{
GpuState state = _subChannels[meth.MethodSubchannel];
_context.Methods.UniformBufferUpdate(state, commandBuffer.Slice(offset + 1, meth.MethodCount));
return true;
}
return false;
}
/// <summary>
/// Sends a uncompressed method for processing by the graphics pipeline.
/// </summary>
/// <param name="meth">Method to be processed</param>
private void Send(MethodParams meth)
{
if ((MethodOffset)meth.Method == MethodOffset.BindChannel)
{
_subChannels[meth.SubChannel] = new GpuState();
_context.Methods.RegisterCallbacks(_subChannels[meth.SubChannel]);
}
else if (meth.Method < 0x60)
{
// TODO: check if macros are shared between subchannels or not. For now let's assume they are.
_fifoClass.Write(meth.Method * 4, meth.Argument);
}
else if (meth.Method < 0xe00)
{
_subChannels[meth.SubChannel].CallMethod(meth, _fifoClass.ShadowCtrl);
}
else
{
int macroIndex = (meth.Method >> 1) & MacroIndexMask;
if ((meth.Method & 1) != 0)
{
_fifoClass.MmePushArgument(macroIndex, meth.Argument);
}
else
{
_fifoClass.MmeStart(macroIndex, meth.Argument);
}
if (meth.IsLastCall)
{
_fifoClass.CallMme(macroIndex, _subChannels[meth.SubChannel]);
_context.Methods.PerformDeferredDraws();
}
}
}
}
}

View file

@ -0,0 +1,69 @@
using Ryujinx.Graphics.Gpu.State;
namespace Ryujinx.Graphics.Gpu.Engine.MME
{
/// <summary>
/// GPU macro program.
/// </summary>
struct Macro
{
/// <summary>
/// Word offset of the code on the code memory.
/// </summary>
public int Position { get; }
private bool _executionPending;
private int _argument;
private readonly MacroInterpreter _interpreter;
/// <summary>
/// Creates a new instance of the GPU cached macro program.
/// </summary>
/// <param name="position">Macro code start position</param>
public Macro(int position)
{
Position = position;
_executionPending = false;
_argument = 0;
_interpreter = new MacroInterpreter();
}
/// <summary>
/// Sets the first argument for the macro call.
/// </summary>
/// <param name="argument">First argument</param>
public void StartExecution(int argument)
{
_argument = argument;
_executionPending = true;
}
/// <summary>
/// Starts executing the macro program code.
/// </summary>
/// <param name="mme">Program code</param>
/// <param name="state">Current GPU state</param>
public void Execute(int[] mme, ShadowRamControl shadowCtrl, GpuState state)
{
if (_executionPending)
{
_executionPending = false;
_interpreter?.Execute(mme, Position, _argument, shadowCtrl, state);
}
}
/// <summary>
/// Pushes an argument to the macro call argument FIFO.
/// </summary>
/// <param name="argument">Argument to be pushed</param>
public void PushArgument(int argument)
{
_interpreter?.Fifo.Enqueue(argument);
}
}
}

View file

@ -1,103 +0,0 @@
using Ryujinx.Graphics.Gpu.State;
using System.Threading;
namespace Ryujinx.Graphics.Gpu.Engine
{
partial class Methods
{
/// <summary>
/// Writes a GPU counter to guest memory.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="argument">Method call argument</param>
public void Semaphore(GpuState state, int argument)
{
FifoSemaphoreOperation op = (FifoSemaphoreOperation)(argument & 3);
var semaphore = state.Get<SemaphoreState>(MethodOffset.Semaphore);
int value = semaphore.Payload;
if (op == FifoSemaphoreOperation.Counter)
{
// TODO: There's much more that should be done here.
// NVN only supports the "Accumulate" mode, so we
// can't currently guess which bits specify the
// reduction operation.
value += _context.MemoryAccessor.Read<int>(semaphore.Address.Pack());
}
_context.MemoryAccessor.Write(semaphore.Address.Pack(), value);
_context.AdvanceSequence();
}
/// <summary>
/// Waits for the GPU to be idle.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="argument">Method call argument</param>
public void WaitForIdle(GpuState state, int argument)
{
PerformDeferredDraws();
_context.Renderer.Pipeline.Barrier();
}
/// <summary>
/// Send macro code/data to the MME.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="argument">Method call argument</param>
public void SendMacroCodeData(GpuState state, int argument)
{
int macroUploadAddress = state.Get<int>(MethodOffset.MacroUploadAddress);
_context.Fifo.SendMacroCodeData(macroUploadAddress++, argument);
state.Write((int)MethodOffset.MacroUploadAddress, macroUploadAddress);
}
/// <summary>
/// Bind a macro index to a position for the MME.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="argument">Method call argument</param>
public void BindMacro(GpuState state, int argument)
{
int macroBindingIndex = state.Get<int>(MethodOffset.MacroBindingIndex);
_context.Fifo.BindMacro(macroBindingIndex++, argument);
state.Write((int)MethodOffset.MacroBindingIndex, macroBindingIndex);
}
public void SetMmeShadowRamControl(GpuState state, int argument)
{
_context.Fifo.SetMmeShadowRamControl((ShadowRamControl)argument);
}
/// <summary>
/// Apply a fence operation on a syncpoint.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="argument">Method call argument</param>
public void FenceAction(GpuState state, int argument)
{
uint threshold = state.Get<uint>(MethodOffset.FenceValue);
FenceActionOperation operation = (FenceActionOperation)(argument & 1);
uint syncpointId = (uint)(argument >> 8) & 0xFF;
if (operation == FenceActionOperation.Acquire)
{
_context.Synchronization.WaitOnSyncpoint(syncpointId, threshold, Timeout.InfiniteTimeSpan);
}
else if (operation == FenceActionOperation.Increment)
{
_context.Synchronization.IncrementSyncpoint(syncpointId);
}
}
}
}

View file

@ -1,4 +1,6 @@
using Ryujinx.Graphics.Gpu.State; using Ryujinx.Graphics.Gpu.State;
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Engine namespace Ryujinx.Graphics.Gpu.Engine
{ {
@ -19,5 +21,21 @@ namespace Ryujinx.Graphics.Gpu.Engine
_context.AdvanceSequence(); _context.AdvanceSequence();
} }
/// <summary>
/// Updates the uniform buffer data with inline data.
/// </summary>
/// <param name="state">Current GPU state</param>
/// <param name="data">Data to be written to the uniform buffer</param>
public void UniformBufferUpdate(GpuState state, ReadOnlySpan<int> data)
{
var uniformBuffer = state.Get<UniformBufferState>(MethodOffset.UniformBufferState);
_context.MemoryAccessor.Write(uniformBuffer.Address.Pack() + (uint)uniformBuffer.Offset, MemoryMarshal.Cast<int, byte>(data));
state.SetUniformBufferOffset(uniformBuffer.Offset + data.Length * 4);
_context.AdvanceSequence();
}
} }
} }

View file

@ -106,20 +106,6 @@ namespace Ryujinx.Graphics.Gpu.Engine
state.RegisterCallback(MethodOffset.UniformBufferBindFragment, UniformBufferBindFragment); state.RegisterCallback(MethodOffset.UniformBufferBindFragment, UniformBufferBindFragment);
} }
/// <summary>
/// Register callback for Fifo method calls that triggers an action on the GPFIFO.
/// </summary>
/// <param name="state">GPU state where the triggers will be registered</param>
public void RegisterCallbacksForFifo(GpuState state)
{
state.RegisterCallback(MethodOffset.Semaphore, Semaphore);
state.RegisterCallback(MethodOffset.FenceAction, FenceAction);
state.RegisterCallback(MethodOffset.WaitForIdle, WaitForIdle);
state.RegisterCallback(MethodOffset.SendMacroCodeData, SendMacroCodeData);
state.RegisterCallback(MethodOffset.BindMacro, BindMacro);
state.RegisterCallback(MethodOffset.SetMmeShadowRamControl, SetMmeShadowRamControl);
}
/// <summary> /// <summary>
/// Updates host state based on the current guest GPU state. /// Updates host state based on the current guest GPU state.
/// </summary> /// </summary>

View file

@ -1,5 +1,6 @@
using Ryujinx.Graphics.GAL; using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Gpu.Engine; using Ryujinx.Graphics.Gpu.Engine;
using Ryujinx.Graphics.Gpu.Engine.GPFifo;
using Ryujinx.Graphics.Gpu.Memory; using Ryujinx.Graphics.Gpu.Memory;
using Ryujinx.Graphics.Gpu.Synchronization; using Ryujinx.Graphics.Gpu.Synchronization;
using System; using System;
@ -37,14 +38,9 @@ namespace Ryujinx.Graphics.Gpu
internal Methods Methods { get; } internal Methods Methods { get; }
/// <summary> /// <summary>
/// GPU commands FIFO. /// GPU General Purpose FIFO queue.
/// </summary> /// </summary>
internal NvGpuFifo Fifo { get; } public GPFifoDevice GPFifo { get; }
/// <summary>
/// DMA pusher.
/// </summary>
public DmaPusher DmaPusher { get; }
/// <summary> /// <summary>
/// GPU synchronization manager. /// GPU synchronization manager.
@ -83,9 +79,7 @@ namespace Ryujinx.Graphics.Gpu
Methods = new Methods(this); Methods = new Methods(this);
Fifo = new NvGpuFifo(this); GPFifo = new GPFifoDevice(this);
DmaPusher = new DmaPusher(this);
Synchronization = new SynchronizationManager(); Synchronization = new SynchronizationManager();
@ -125,6 +119,7 @@ namespace Ryujinx.Graphics.Gpu
Methods.BufferManager.Dispose(); Methods.BufferManager.Dispose();
Methods.TextureManager.Dispose(); Methods.TextureManager.Dispose();
Renderer.Dispose(); Renderer.Dispose();
GPFifo.Dispose();
} }
} }
} }

View file

@ -1,220 +0,0 @@
using Ryujinx.Graphics.Gpu.State;
using System.IO;
namespace Ryujinx.Graphics.Gpu
{
/// <summary>
/// GPU commands FIFO.
/// </summary>
class NvGpuFifo
{
private const int MacrosCount = 0x80;
private const int MacroIndexMask = MacrosCount - 1;
// Note: The size of the macro memory is unknown, we just make
// a guess here and use 256kb as the size. Increase if needed.
private const int MmeWords = 256 * 256;
private GpuContext _context;
/// <summary>
/// Cached GPU macro program.
/// </summary>
private struct CachedMacro
{
/// <summary>
/// Word offset of the code on the code memory.
/// </summary>
public int Position { get; }
private bool _executionPending;
private int _argument;
private MacroInterpreter _interpreter;
/// <summary>
/// Creates a new instance of the GPU cached macro program.
/// </summary>
/// <param name="position">Macro code start position</param>
public CachedMacro(int position)
{
Position = position;
_executionPending = false;
_argument = 0;
_interpreter = new MacroInterpreter();
}
/// <summary>
/// Sets the first argument for the macro call.
/// </summary>
/// <param name="argument">First argument</param>
public void StartExecution(int argument)
{
_argument = argument;
_executionPending = true;
}
/// <summary>
/// Starts executing the macro program code.
/// </summary>
/// <param name="mme">Program code</param>
/// <param name="state">Current GPU state</param>
public void Execute(int[] mme, ShadowRamControl shadowCtrl, GpuState state)
{
if (_executionPending)
{
_executionPending = false;
_interpreter?.Execute(mme, Position, _argument, shadowCtrl, state);
}
}
/// <summary>
/// Pushes an argument to the macro call argument FIFO.
/// </summary>
/// <param name="argument">Argument to be pushed</param>
public void PushArgument(int argument)
{
_interpreter?.Fifo.Enqueue(argument);
}
}
private ShadowRamControl _shadowCtrl;
private CachedMacro[] _macros;
private int[] _mme;
/// <summary>
/// GPU sub-channel information.
/// </summary>
private class SubChannel
{
/// <summary>
/// Sub-channel GPU state.
/// </summary>
public GpuState State { get; }
/// <summary>
/// Engine bound to the sub-channel.
/// </summary>
public ClassId Class { get; set; }
/// <summary>
/// Creates a new instance of the GPU sub-channel.
/// </summary>
public SubChannel()
{
State = new GpuState();
}
}
private SubChannel[] _subChannels;
private SubChannel _fifoChannel;
/// <summary>
/// Creates a new instance of the GPU commands FIFO.
/// </summary>
/// <param name="context">GPU emulation context</param>
public NvGpuFifo(GpuContext context)
{
_context = context;
_macros = new CachedMacro[MacrosCount];
_mme = new int[MmeWords];
_fifoChannel = new SubChannel();
_context.Methods.RegisterCallbacksForFifo(_fifoChannel.State);
_subChannels = new SubChannel[8];
for (int index = 0; index < _subChannels.Length; index++)
{
_subChannels[index] = new SubChannel();
_context.Methods.RegisterCallbacks(_subChannels[index].State);
}
}
/// <summary>
/// Send macro code/data to the MME
/// </summary>
/// <param name="index">The index in the MME</param>
/// <param name="data">The data to use</param>
public void SendMacroCodeData(int index, int data)
{
_mme[index] = data;
}
/// <summary>
/// Bind a macro index to a position for the MME
/// </summary>
/// <param name="index">The macro index</param>
/// <param name="position">The position of the macro</param>
public void BindMacro(int index, int position)
{
_macros[index] = new CachedMacro(position);
}
/// <summary>
/// Change the shadow RAM setting
/// </summary>
/// <param name="shadowCtrl">The new Shadow RAM setting</param>
public void SetMmeShadowRamControl(ShadowRamControl shadowCtrl)
{
_shadowCtrl = shadowCtrl;
}
/// <summary>
/// Calls a GPU method.
/// </summary>
/// <param name="meth">GPU method call parameters</param>
public void CallMethod(MethodParams meth)
{
if ((MethodOffset)meth.Method == MethodOffset.BindChannel)
{
_subChannels[meth.SubChannel] = new SubChannel
{
Class = (ClassId)meth.Argument
};
_context.Methods.RegisterCallbacks(_subChannels[meth.SubChannel].State);
}
else if (meth.Method < 0x60)
{
// TODO: check if macros are shared between subchannels or not. For now let's assume they are.
_fifoChannel.State.CallMethod(meth, _shadowCtrl);
}
else if (meth.Method < 0xe00)
{
_subChannels[meth.SubChannel].State.CallMethod(meth, _shadowCtrl);
}
else
{
int macroIndex = (meth.Method >> 1) & MacroIndexMask;
if ((meth.Method & 1) != 0)
{
_macros[macroIndex].PushArgument(meth.Argument);
}
else
{
_macros[macroIndex].StartExecution(meth.Argument);
}
if (meth.IsLastCall)
{
_macros[macroIndex].Execute(_mme, _shadowCtrl, _subChannels[meth.SubChannel].State);
_context.Methods.PerformDeferredDraws();
}
}
}
}
}

View file

@ -2,6 +2,7 @@
<ItemGroup> <ItemGroup>
<ProjectReference Include="..\Ryujinx.Cpu\Ryujinx.Cpu.csproj" /> <ProjectReference Include="..\Ryujinx.Cpu\Ryujinx.Cpu.csproj" />
<ProjectReference Include="..\Ryujinx.Graphics.Device\Ryujinx.Graphics.Device.csproj" />
<ProjectReference Include="..\Ryujinx.Graphics.GAL\Ryujinx.Graphics.GAL.csproj" /> <ProjectReference Include="..\Ryujinx.Graphics.GAL\Ryujinx.Graphics.GAL.csproj" />
<ProjectReference Include="..\Ryujinx.Common\Ryujinx.Common.csproj" /> <ProjectReference Include="..\Ryujinx.Common\Ryujinx.Common.csproj" />
<ProjectReference Include="..\Ryujinx.Graphics.Texture\Ryujinx.Graphics.Texture.csproj" /> <ProjectReference Include="..\Ryujinx.Graphics.Texture\Ryujinx.Graphics.Texture.csproj" />

View file

@ -1,11 +0,0 @@
namespace Ryujinx.Graphics.Gpu.State
{
/// <summary>
/// Fence action operations.
/// </summary>
enum FenceActionOperation
{
Acquire = 0,
Increment = 1
}
}

View file

@ -1,9 +0,0 @@
namespace Ryujinx.Graphics.Gpu.State
{
enum FifoSemaphoreOperation
{
Counter = 0,
Acquire = 1,
Release = 2
}
}

View file

@ -9,15 +9,6 @@ namespace Ryujinx.Graphics.Gpu.State
enum MethodOffset enum MethodOffset
{ {
BindChannel = 0x0, BindChannel = 0x0,
Semaphore = 0x4,
FenceValue = 0x1c,
FenceAction = 0x1d,
WaitForIdle = 0x44,
MacroUploadAddress = 0x45,
SendMacroCodeData = 0x46,
MacroBindingIndex = 0x47,
BindMacro = 0x48,
SetMmeShadowRamControl = 0x49,
I2mParams = 0x60, I2mParams = 0x60,
LaunchDma = 0x6c, LaunchDma = 0x6c,
LoadInlineData = 0x6d, LoadInlineData = 0x6d,

View file

@ -414,10 +414,10 @@ namespace Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostChannel
if (header.Flags.HasFlag(SubmitGpfifoFlags.FenceWait) && !_device.System.HostSyncpoint.IsSyncpointExpired(header.Fence.Id, header.Fence.Value)) if (header.Flags.HasFlag(SubmitGpfifoFlags.FenceWait) && !_device.System.HostSyncpoint.IsSyncpointExpired(header.Fence.Id, header.Fence.Value))
{ {
_device.Gpu.DmaPusher.PushHostCommandBuffer(CreateWaitCommandBuffer(header.Fence)); _device.Gpu.GPFifo.PushHostCommandBuffer(CreateWaitCommandBuffer(header.Fence));
} }
_device.Gpu.DmaPusher.PushEntries(entries); _device.Gpu.GPFifo.PushEntries(entries);
header.Fence.Id = _channelSyncpoint.Id; header.Fence.Id = _channelSyncpoint.Id;
@ -439,12 +439,12 @@ namespace Ryujinx.HLE.HOS.Services.Nv.NvDrvServices.NvHostChannel
if (header.Flags.HasFlag(SubmitGpfifoFlags.FenceIncrement)) if (header.Flags.HasFlag(SubmitGpfifoFlags.FenceIncrement))
{ {
_device.Gpu.DmaPusher.PushHostCommandBuffer(CreateIncrementCommandBuffer(ref header.Fence, header.Flags)); _device.Gpu.GPFifo.PushHostCommandBuffer(CreateIncrementCommandBuffer(ref header.Fence, header.Flags));
} }
header.Flags = SubmitGpfifoFlags.None; header.Flags = SubmitGpfifoFlags.None;
_device.Gpu.DmaPusher.SignalNewEntries(); _device.Gpu.GPFifo.SignalNewEntries();
return NvInternalResult.Success; return NvInternalResult.Success;
} }

View file

@ -148,12 +148,12 @@ namespace Ryujinx.HLE
public bool WaitFifo() public bool WaitFifo()
{ {
return Gpu.DmaPusher.WaitForCommands(); return Gpu.GPFifo.WaitForCommands();
} }
public void ProcessFrame() public void ProcessFrame()
{ {
Gpu.DmaPusher.DispatchCalls(); Gpu.GPFifo.DispatchCalls();
} }
public void PresentFrame(Action swapBuffersCallback) public void PresentFrame(Action swapBuffersCallback)