using Ryujinx.HLE.HOS.Kernel.Common; using Ryujinx.HLE.HOS.Kernel.Process; using System.Collections.Generic; using System.Linq; namespace Ryujinx.HLE.HOS.Kernel.Threading { class KAddressArbiter { private const int HasListenersMask = 0x40000000; private Horizon _system; public List<KThread> CondVarThreads; public List<KThread> ArbiterThreads; public KAddressArbiter(Horizon system) { _system = system; CondVarThreads = new List<KThread>(); ArbiterThreads = new List<KThread>(); } public KernelResult ArbitrateLock(int ownerHandle, ulong mutexAddress, int requesterHandle) { KThread currentThread = _system.Scheduler.GetCurrentThread(); _system.CriticalSection.Enter(); currentThread.SignaledObj = null; currentThread.ObjSyncResult = KernelResult.Success; KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); if (!KernelTransfer.UserToKernelInt32(_system, mutexAddress, out int mutexValue)) { _system.CriticalSection.Leave(); return KernelResult.InvalidMemState; } if (mutexValue != (ownerHandle | HasListenersMask)) { _system.CriticalSection.Leave(); return 0; } KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(ownerHandle); if (mutexOwner == null) { _system.CriticalSection.Leave(); return KernelResult.InvalidHandle; } currentThread.MutexAddress = mutexAddress; currentThread.ThreadHandleForUserMutex = requesterHandle; mutexOwner.AddMutexWaiter(currentThread); currentThread.Reschedule(ThreadSchedState.Paused); _system.CriticalSection.Leave(); _system.CriticalSection.Enter(); if (currentThread.MutexOwner != null) { currentThread.MutexOwner.RemoveMutexWaiter(currentThread); } _system.CriticalSection.Leave(); return (KernelResult)currentThread.ObjSyncResult; } public KernelResult ArbitrateUnlock(ulong mutexAddress) { _system.CriticalSection.Enter(); KThread currentThread = _system.Scheduler.GetCurrentThread(); (KernelResult result, KThread newOwnerThread) = MutexUnlock(currentThread, mutexAddress); if (result != KernelResult.Success && newOwnerThread != null) { newOwnerThread.SignaledObj = null; newOwnerThread.ObjSyncResult = result; } _system.CriticalSection.Leave(); return result; } public KernelResult WaitProcessWideKeyAtomic( ulong mutexAddress, ulong condVarAddress, int threadHandle, long timeout) { _system.CriticalSection.Enter(); KThread currentThread = _system.Scheduler.GetCurrentThread(); currentThread.SignaledObj = null; currentThread.ObjSyncResult = KernelResult.TimedOut; if (currentThread.ShallBeTerminated || currentThread.SchedFlags == ThreadSchedState.TerminationPending) { _system.CriticalSection.Leave(); return KernelResult.ThreadTerminating; } (KernelResult result, _) = MutexUnlock(currentThread, mutexAddress); if (result != KernelResult.Success) { _system.CriticalSection.Leave(); return result; } currentThread.MutexAddress = mutexAddress; currentThread.ThreadHandleForUserMutex = threadHandle; currentThread.CondVarAddress = condVarAddress; CondVarThreads.Add(currentThread); if (timeout != 0) { currentThread.Reschedule(ThreadSchedState.Paused); if (timeout > 0) { _system.TimeManager.ScheduleFutureInvocation(currentThread, timeout); } } _system.CriticalSection.Leave(); if (timeout > 0) { _system.TimeManager.UnscheduleFutureInvocation(currentThread); } _system.CriticalSection.Enter(); if (currentThread.MutexOwner != null) { currentThread.MutexOwner.RemoveMutexWaiter(currentThread); } CondVarThreads.Remove(currentThread); _system.CriticalSection.Leave(); return (KernelResult)currentThread.ObjSyncResult; } private (KernelResult, KThread) MutexUnlock(KThread currentThread, ulong mutexAddress) { KThread newOwnerThread = currentThread.RelinquishMutex(mutexAddress, out int count); int mutexValue = 0; if (newOwnerThread != null) { mutexValue = newOwnerThread.ThreadHandleForUserMutex; if (count >= 2) { mutexValue |= HasListenersMask; } newOwnerThread.SignaledObj = null; newOwnerThread.ObjSyncResult = KernelResult.Success; newOwnerThread.ReleaseAndResume(); } KernelResult result = KernelResult.Success; if (!KernelTransfer.KernelToUserInt32(_system, mutexAddress, mutexValue)) { result = KernelResult.InvalidMemState; } return (result, newOwnerThread); } public void SignalProcessWideKey(ulong address, int count) { Queue<KThread> signaledThreads = new Queue<KThread>(); _system.CriticalSection.Enter(); IOrderedEnumerable<KThread> sortedThreads = CondVarThreads.OrderBy(x => x.DynamicPriority); foreach (KThread thread in sortedThreads.Where(x => x.CondVarAddress == address)) { TryAcquireMutex(thread); signaledThreads.Enqueue(thread); // If the count is <= 0, we should signal all threads waiting. if (count >= 1 && --count == 0) { break; } } while (signaledThreads.TryDequeue(out KThread thread)) { CondVarThreads.Remove(thread); } _system.CriticalSection.Leave(); } private KThread TryAcquireMutex(KThread requester) { ulong address = requester.MutexAddress; KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); int mutexValue, newMutexValue; do { if (!KernelTransfer.UserToKernelInt32(_system, address, out mutexValue)) { // Invalid address. requester.SignaledObj = null; requester.ObjSyncResult = KernelResult.InvalidMemState; return null; } if (mutexValue != 0) { // Update value to indicate there is a mutex waiter now. newMutexValue = mutexValue | HasListenersMask; } else { // No thread owning the mutex, assign to requesting thread. newMutexValue = requester.ThreadHandleForUserMutex; } } while (!currentProcess.CpuMemory.AtomicCompareExchangeInt32((long)address, mutexValue, newMutexValue)); if (mutexValue == 0) { // We now own the mutex. requester.SignaledObj = null; requester.ObjSyncResult = KernelResult.Success; requester.ReleaseAndResume(); return null; } mutexValue &= ~HasListenersMask; KThread mutexOwner = currentProcess.HandleTable.GetObject<KThread>(mutexValue); if (mutexOwner != null) { // Mutex already belongs to another thread, wait for it. mutexOwner.AddMutexWaiter(requester); } else { // Invalid mutex owner. requester.SignaledObj = null; requester.ObjSyncResult = KernelResult.InvalidHandle; requester.ReleaseAndResume(); } return mutexOwner; } public KernelResult WaitForAddressIfEqual(ulong address, int value, long timeout) { KThread currentThread = _system.Scheduler.GetCurrentThread(); _system.CriticalSection.Enter(); if (currentThread.ShallBeTerminated || currentThread.SchedFlags == ThreadSchedState.TerminationPending) { _system.CriticalSection.Leave(); return KernelResult.ThreadTerminating; } currentThread.SignaledObj = null; currentThread.ObjSyncResult = KernelResult.TimedOut; if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue)) { _system.CriticalSection.Leave(); return KernelResult.InvalidMemState; } if (currentValue == value) { if (timeout == 0) { _system.CriticalSection.Leave(); return KernelResult.TimedOut; } currentThread.MutexAddress = address; currentThread.WaitingInArbitration = true; InsertSortedByPriority(ArbiterThreads, currentThread); currentThread.Reschedule(ThreadSchedState.Paused); if (timeout > 0) { _system.TimeManager.ScheduleFutureInvocation(currentThread, timeout); } _system.CriticalSection.Leave(); if (timeout > 0) { _system.TimeManager.UnscheduleFutureInvocation(currentThread); } _system.CriticalSection.Enter(); if (currentThread.WaitingInArbitration) { ArbiterThreads.Remove(currentThread); currentThread.WaitingInArbitration = false; } _system.CriticalSection.Leave(); return (KernelResult)currentThread.ObjSyncResult; } _system.CriticalSection.Leave(); return KernelResult.InvalidState; } public KernelResult WaitForAddressIfLessThan( ulong address, int value, bool shouldDecrement, long timeout) { KThread currentThread = _system.Scheduler.GetCurrentThread(); _system.CriticalSection.Enter(); if (currentThread.ShallBeTerminated || currentThread.SchedFlags == ThreadSchedState.TerminationPending) { _system.CriticalSection.Leave(); return KernelResult.ThreadTerminating; } currentThread.SignaledObj = null; currentThread.ObjSyncResult = KernelResult.TimedOut; KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); if (!KernelTransfer.UserToKernelInt32(_system, address, out int currentValue)) { _system.CriticalSection.Leave(); return KernelResult.InvalidMemState; } if (shouldDecrement) { currentValue = currentProcess.CpuMemory.AtomicDecrementInt32((long)address) + 1; } if (currentValue < value) { if (timeout == 0) { _system.CriticalSection.Leave(); return KernelResult.TimedOut; } currentThread.MutexAddress = address; currentThread.WaitingInArbitration = true; InsertSortedByPriority(ArbiterThreads, currentThread); currentThread.Reschedule(ThreadSchedState.Paused); if (timeout > 0) { _system.TimeManager.ScheduleFutureInvocation(currentThread, timeout); } _system.CriticalSection.Leave(); if (timeout > 0) { _system.TimeManager.UnscheduleFutureInvocation(currentThread); } _system.CriticalSection.Enter(); if (currentThread.WaitingInArbitration) { ArbiterThreads.Remove(currentThread); currentThread.WaitingInArbitration = false; } _system.CriticalSection.Leave(); return (KernelResult)currentThread.ObjSyncResult; } _system.CriticalSection.Leave(); return KernelResult.InvalidState; } private void InsertSortedByPriority(List<KThread> threads, KThread thread) { int nextIndex = -1; for (int index = 0; index < threads.Count; index++) { if (threads[index].DynamicPriority > thread.DynamicPriority) { nextIndex = index; break; } } if (nextIndex != -1) { threads.Insert(nextIndex, thread); } else { threads.Add(thread); } } public KernelResult Signal(ulong address, int count) { _system.CriticalSection.Enter(); WakeArbiterThreads(address, count); _system.CriticalSection.Leave(); return KernelResult.Success; } public KernelResult SignalAndIncrementIfEqual(ulong address, int value, int count) { _system.CriticalSection.Enter(); KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); int currentValue; do { if (!KernelTransfer.UserToKernelInt32(_system, address, out currentValue)) { _system.CriticalSection.Leave(); return KernelResult.InvalidMemState; } if (currentValue != value) { _system.CriticalSection.Leave(); return KernelResult.InvalidState; } } while (!currentProcess.CpuMemory.AtomicCompareExchangeInt32((long)address, currentValue, currentValue + 1)); WakeArbiterThreads(address, count); _system.CriticalSection.Leave(); return KernelResult.Success; } public KernelResult SignalAndModifyIfEqual(ulong address, int value, int count) { _system.CriticalSection.Enter(); int offset; // The value is decremented if the number of threads waiting is less // or equal to the Count of threads to be signaled, or Count is zero // or negative. It is incremented if there are no threads waiting. int waitingCount = 0; foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address)) { if (++waitingCount > count) { break; } } if (waitingCount > 0) { offset = waitingCount <= count || count <= 0 ? -1 : 0; } else { offset = 1; } KProcess currentProcess = _system.Scheduler.GetCurrentProcess(); int currentValue; do { if (!KernelTransfer.UserToKernelInt32(_system, address, out currentValue)) { _system.CriticalSection.Leave(); return KernelResult.InvalidMemState; } if (currentValue != value) { _system.CriticalSection.Leave(); return KernelResult.InvalidState; } } while (!currentProcess.CpuMemory.AtomicCompareExchangeInt32((long)address, currentValue, currentValue + offset)); WakeArbiterThreads(address, count); _system.CriticalSection.Leave(); return KernelResult.Success; } private void WakeArbiterThreads(ulong address, int count) { Queue<KThread> signaledThreads = new Queue<KThread>(); foreach (KThread thread in ArbiterThreads.Where(x => x.MutexAddress == address)) { signaledThreads.Enqueue(thread); // If the count is <= 0, we should signal all threads waiting. if (count >= 1 && --count == 0) { break; } } while (signaledThreads.TryDequeue(out KThread thread)) { thread.SignaledObj = null; thread.ObjSyncResult = KernelResult.Success; thread.ReleaseAndResume(); thread.WaitingInArbitration = false; ArbiterThreads.Remove(thread); } } } }