using ARMeilleure.Memory; using Ryujinx.Cpu.Tracking; using Ryujinx.Memory; using Ryujinx.Memory.Tracking; using System; using System.Collections.Generic; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Threading; namespace Ryujinx.Cpu { /// <summary> /// Represents a CPU memory manager. /// </summary> public sealed class MemoryManager : IMemoryManager, IVirtualMemoryManager, IWritableBlock, IDisposable { public const int PageBits = 12; public const int PageSize = 1 << PageBits; public const int PageMask = PageSize - 1; private const int PteSize = 8; private const int PointerTagBit = 62; private readonly InvalidAccessHandler _invalidAccessHandler; /// <summary> /// Address space width in bits. /// </summary> public int AddressSpaceBits { get; } private readonly ulong _addressSpaceSize; private readonly MemoryBlock _backingMemory; private readonly MemoryBlock _pageTable; /// <summary> /// Page table base pointer. /// </summary> public IntPtr PageTablePointer => _pageTable.Pointer; public MemoryTracking Tracking { get; } internal event Action<ulong, ulong> UnmapEvent; /// <summary> /// Creates a new instance of the memory manager. /// </summary> /// <param name="backingMemory">Physical backing memory where virtual memory will be mapped to</param> /// <param name="addressSpaceSize">Size of the address space</param> /// <param name="invalidAccessHandler">Optional function to handle invalid memory accesses</param> public MemoryManager(MemoryBlock backingMemory, ulong addressSpaceSize, InvalidAccessHandler invalidAccessHandler = null) { _invalidAccessHandler = invalidAccessHandler; ulong asSize = PageSize; int asBits = PageBits; while (asSize < addressSpaceSize) { asSize <<= 1; asBits++; } AddressSpaceBits = asBits; _addressSpaceSize = asSize; _backingMemory = backingMemory; _pageTable = new MemoryBlock((asSize / PageSize) * PteSize); Tracking = new MemoryTracking(this, backingMemory, PageSize); Tracking.EnablePhysicalProtection = false; // Disabled for now, as protection is done in software. } /// <summary> /// Maps a virtual memory range into a physical memory range. /// </summary> /// <remarks> /// Addresses and size must be page aligned. /// </remarks> /// <param name="va">Virtual memory address</param> /// <param name="pa">Physical memory address</param> /// <param name="size">Size to be mapped</param> public void Map(ulong va, ulong pa, ulong size) { AssertValidAddressAndSize(va, size); ulong remainingSize = size; ulong oVa = va; ulong oPa = pa; while (remainingSize != 0) { _pageTable.Write((va / PageSize) * PteSize, PaToPte(pa)); va += PageSize; pa += PageSize; remainingSize -= PageSize; } Tracking.Map(oVa, oPa, size); } /// <summary> /// Unmaps a previously mapped range of virtual memory. /// </summary> /// <param name="va">Virtual address of the range to be unmapped</param> /// <param name="size">Size of the range to be unmapped</param> public void Unmap(ulong va, ulong size) { // If size is 0, there's nothing to unmap, just exit early. if (size == 0) { return; } AssertValidAddressAndSize(va, size); UnmapEvent?.Invoke(va, size); Tracking.Unmap(va, size); ulong remainingSize = size; while (remainingSize != 0) { _pageTable.Write((va / PageSize) * PteSize, 0UL); va += PageSize; remainingSize -= PageSize; } } /// <summary> /// Reads data from CPU mapped memory. /// </summary> /// <typeparam name="T">Type of the data being read</typeparam> /// <param name="va">Virtual address of the data in memory</param> /// <returns>The data</returns> /// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception> public T Read<T>(ulong va) where T : unmanaged { return MemoryMarshal.Cast<byte, T>(GetSpan(va, Unsafe.SizeOf<T>(), true))[0]; } /// <summary> /// Reads data from CPU mapped memory, with read tracking /// </summary> /// <typeparam name="T">Type of the data being read</typeparam> /// <param name="va">Virtual address of the data in memory</param> /// <returns>The data</returns> public T ReadTracked<T>(ulong va) where T : unmanaged { SignalMemoryTracking(va, (ulong)Unsafe.SizeOf<T>(), false); return MemoryMarshal.Cast<byte, T>(GetSpan(va, Unsafe.SizeOf<T>()))[0]; } /// <summary> /// Reads data from CPU mapped memory. /// </summary> /// <param name="va">Virtual address of the data in memory</param> /// <param name="data">Span to store the data being read into</param> /// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception> public void Read(ulong va, Span<byte> data) { ReadImpl(va, data); } /// <summary> /// Writes data to CPU mapped memory. /// </summary> /// <typeparam name="T">Type of the data being written</typeparam> /// <param name="va">Virtual address to write the data into</param> /// <param name="value">Data to be written</param> /// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception> public void Write<T>(ulong va, T value) where T : unmanaged { Write(va, MemoryMarshal.Cast<T, byte>(MemoryMarshal.CreateSpan(ref value, 1))); } /// <summary> /// Writes data to CPU mapped memory, with write tracking. /// </summary> /// <param name="va">Virtual address to write the data into</param> /// <param name="data">Data to be written</param> /// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception> public void Write(ulong va, ReadOnlySpan<byte> data) { if (data.Length == 0) { return; } SignalMemoryTracking(va, (ulong)data.Length, true); WriteImpl(va, data); } /// <summary> /// Writes data to CPU mapped memory, without write tracking. /// </summary> /// <param name="va">Virtual address to write the data into</param> /// <param name="data">Data to be written</param> public void WriteUntracked(ulong va, ReadOnlySpan<byte> data) { if (data.Length == 0) { return; } WriteImpl(va, data); } /// <summary> /// Writes data to CPU mapped memory. /// </summary> /// <param name="va">Virtual address to write the data into</param> /// <param name="data">Data to be written</param> [MethodImpl(MethodImplOptions.AggressiveInlining)] private void WriteImpl(ulong va, ReadOnlySpan<byte> data) { try { AssertValidAddressAndSize(va, (ulong)data.Length); if (IsContiguousAndMapped(va, data.Length)) { data.CopyTo(_backingMemory.GetSpan(GetPhysicalAddressInternal(va), data.Length)); } else { int offset = 0, size; if ((va & PageMask) != 0) { ulong pa = GetPhysicalAddressInternal(va); size = Math.Min(data.Length, PageSize - (int)(va & PageMask)); data.Slice(0, size).CopyTo(_backingMemory.GetSpan(pa, size)); offset += size; } for (; offset < data.Length; offset += size) { ulong pa = GetPhysicalAddressInternal(va + (ulong)offset); size = Math.Min(data.Length - offset, PageSize); data.Slice(offset, size).CopyTo(_backingMemory.GetSpan(pa, size)); } } } catch (InvalidMemoryRegionException) { if (_invalidAccessHandler == null || !_invalidAccessHandler(va)) { throw; } } } /// <summary> /// Gets a read-only span of data from CPU mapped memory. /// </summary> /// <remarks> /// This may perform a allocation if the data is not contiguous in memory. /// For this reason, the span is read-only, you can't modify the data. /// </remarks> /// <param name="va">Virtual address of the data</param> /// <param name="size">Size of the data</param> /// <param name="tracked">True if read tracking is triggered on the span</param> /// <returns>A read-only span of the data</returns> /// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception> public ReadOnlySpan<byte> GetSpan(ulong va, int size, bool tracked = false) { if (size == 0) { return ReadOnlySpan<byte>.Empty; } if (tracked) { SignalMemoryTracking(va, (ulong)size, false); } if (IsContiguousAndMapped(va, size)) { return _backingMemory.GetSpan(GetPhysicalAddressInternal(va), size); } else { Span<byte> data = new byte[size]; ReadImpl(va, data); return data; } } /// <summary> /// Gets a region of memory that can be written to. /// </summary> /// <remarks> /// If the requested region is not contiguous in physical memory, /// this will perform an allocation, and flush the data (writing it /// back to guest memory) on disposal. /// </remarks> /// <param name="va">Virtual address of the data</param> /// <param name="size">Size of the data</param> /// <returns>A writable region of memory containing the data</returns> /// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception> public WritableRegion GetWritableRegion(ulong va, int size) { if (size == 0) { return new WritableRegion(null, va, Memory<byte>.Empty); } if (IsContiguousAndMapped(va, size)) { return new WritableRegion(null, va, _backingMemory.GetMemory(GetPhysicalAddressInternal(va), size)); } else { Memory<byte> memory = new byte[size]; GetSpan(va, size).CopyTo(memory.Span); return new WritableRegion(this, va, memory); } } /// <summary> /// Gets a reference for the given type at the specified virtual memory address. /// </summary> /// <remarks> /// The data must be located at a contiguous memory region. /// </remarks> /// <typeparam name="T">Type of the data to get the reference</typeparam> /// <param name="va">Virtual address of the data</param> /// <returns>A reference to the data in memory</returns> /// <exception cref="MemoryNotContiguousException">Throw if the specified memory region is not contiguous in physical memory</exception> public ref T GetRef<T>(ulong va) where T : unmanaged { if (!IsContiguous(va, Unsafe.SizeOf<T>())) { ThrowMemoryNotContiguous(); } SignalMemoryTracking(va, (ulong)Unsafe.SizeOf<T>(), true); return ref _backingMemory.GetRef<T>(GetPhysicalAddressInternal(va)); } /// <summary> /// Computes the number of pages in a virtual address range. /// </summary> /// <param name="va">Virtual address of the range</param> /// <param name="size">Size of the range</param> /// <param name="startVa">The virtual address of the beginning of the first page</param> /// <remarks>This function does not differentiate between allocated and unallocated pages.</remarks> [MethodImpl(MethodImplOptions.AggressiveInlining)] private int GetPagesCount(ulong va, uint size, out ulong startVa) { // WARNING: Always check if ulong does not overflow during the operations. startVa = va & ~(ulong)PageMask; ulong vaSpan = (va - startVa + size + PageMask) & ~(ulong)PageMask; return (int)(vaSpan / PageSize); } private void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException(); [MethodImpl(MethodImplOptions.AggressiveInlining)] private bool IsContiguousAndMapped(ulong va, int size) => IsContiguous(va, size) && IsMapped(va); [MethodImpl(MethodImplOptions.AggressiveInlining)] private bool IsContiguous(ulong va, int size) { if (!ValidateAddress(va) || !ValidateAddressAndSize(va, (ulong)size)) { return false; } int pages = GetPagesCount(va, (uint)size, out va); for (int page = 0; page < pages - 1; page++) { if (!ValidateAddress(va + PageSize)) { return false; } if (GetPhysicalAddressInternal(va) + PageSize != GetPhysicalAddressInternal(va + PageSize)) { return false; } va += PageSize; } return true; } /// <summary> /// Gets the physical regions that make up the given virtual address region. /// If any part of the virtual region is unmapped, null is returned. /// </summary> /// <param name="va">Virtual address of the range</param> /// <param name="size">Size of the range</param> /// <returns>Array of physical regions</returns> public (ulong address, ulong size)[] GetPhysicalRegions(ulong va, ulong size) { if (!ValidateAddress(va) || !ValidateAddressAndSize(va, size)) { return null; } int pages = GetPagesCount(va, (uint)size, out va); List<(ulong, ulong)> regions = new List<(ulong, ulong)>(); ulong regionStart = GetPhysicalAddressInternal(va); ulong regionSize = PageSize; for (int page = 0; page < pages - 1; page++) { if (!ValidateAddress(va + PageSize)) { return null; } ulong newPa = GetPhysicalAddressInternal(va + PageSize); if (GetPhysicalAddressInternal(va) + PageSize != newPa) { regions.Add((regionStart, regionSize)); regionStart = newPa; regionSize = 0; } va += PageSize; regionSize += PageSize; } regions.Add((regionStart, regionSize)); return regions.ToArray(); } private void ReadImpl(ulong va, Span<byte> data) { if (data.Length == 0) { return; } try { AssertValidAddressAndSize(va, (ulong)data.Length); int offset = 0, size; if ((va & PageMask) != 0) { ulong pa = GetPhysicalAddressInternal(va); size = Math.Min(data.Length, PageSize - (int)(va & PageMask)); _backingMemory.GetSpan(pa, size).CopyTo(data.Slice(0, size)); offset += size; } for (; offset < data.Length; offset += size) { ulong pa = GetPhysicalAddressInternal(va + (ulong)offset); size = Math.Min(data.Length - offset, PageSize); _backingMemory.GetSpan(pa, size).CopyTo(data.Slice(offset, size)); } } catch (InvalidMemoryRegionException) { if (_invalidAccessHandler == null || !_invalidAccessHandler(va)) { throw; } } } /// <summary> /// Checks if a memory range is mapped. /// </summary> /// <param name="va">Virtual address of the range</param> /// <param name="size">Size of the range in bytes</param> /// <returns>True if the entire range is mapped, false otherwise</returns> public bool IsRangeMapped(ulong va, ulong size) { if (size == 0UL) { return true; } if (!ValidateAddressAndSize(va, size)) { return false; } int pages = GetPagesCount(va, (uint)size, out va); for (int page = 0; page < pages; page++) { if (!IsMapped(va)) { return false; } va += PageSize; } return true; } /// <summary> /// Checks if the page at a given CPU virtual address is mapped. /// </summary> /// <param name="va">Virtual address to check</param> /// <returns>True if the address is mapped, false otherwise</returns> [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool IsMapped(ulong va) { if (!ValidateAddress(va)) { return false; } return _pageTable.Read<ulong>((va / PageSize) * PteSize) != 0; } private bool ValidateAddress(ulong va) { return va < _addressSpaceSize; } /// <summary> /// Checks if the combination of virtual address and size is part of the addressable space. /// </summary> /// <param name="va">Virtual address of the range</param> /// <param name="size">Size of the range in bytes</param> /// <returns>True if the combination of virtual address and size is part of the addressable space</returns> private bool ValidateAddressAndSize(ulong va, ulong size) { ulong endVa = va + size; return endVa >= va && endVa >= size && endVa <= _addressSpaceSize; } /// <summary> /// Ensures the combination of virtual address and size is part of the addressable space. /// </summary> /// <param name="va">Virtual address of the range</param> /// <param name="size">Size of the range in bytes</param> /// <exception cref="InvalidMemoryRegionException">Throw when the memory region specified outside the addressable space</exception> private void AssertValidAddressAndSize(ulong va, ulong size) { if (!ValidateAddressAndSize(va, size)) { throw new InvalidMemoryRegionException($"va=0x{va:X16}, size=0x{size:X16}"); } } /// <summary> /// Performs address translation of the address inside a CPU mapped memory range. /// </summary> /// <remarks> /// If the address is invalid or unmapped, -1 will be returned. /// </remarks> /// <param name="va">Virtual address to be translated</param> /// <returns>The physical address</returns> public ulong GetPhysicalAddress(ulong va) { // We return -1L if the virtual address is invalid or unmapped. if (!ValidateAddress(va) || !IsMapped(va)) { return ulong.MaxValue; } return GetPhysicalAddressInternal(va); } private ulong GetPhysicalAddressInternal(ulong va) { return PteToPa(_pageTable.Read<ulong>((va / PageSize) * PteSize) & ~(0xffffUL << 48)) + (va & PageMask); } /// <summary> /// Reprotect a region of virtual memory for tracking. Sets software protection bits. /// </summary> /// <param name="va">Virtual address base</param> /// <param name="size">Size of the region to protect</param> /// <param name="protection">Memory protection to set</param> public void TrackingReprotect(ulong va, ulong size, MemoryPermission protection) { AssertValidAddressAndSize(va, size); // Protection is inverted on software pages, since the default value is 0. protection = (~protection) & MemoryPermission.ReadAndWrite; long tag = protection switch { MemoryPermission.None => 0L, MemoryPermission.Write => 2L << PointerTagBit, _ => 3L << PointerTagBit }; int pages = GetPagesCount(va, (uint)size, out va); ulong pageStart = va >> PageBits; long invTagMask = ~(0xffffL << 48); for (int page = 0; page < pages; page++) { ref long pageRef = ref _pageTable.GetRef<long>(pageStart * PteSize); long pte; do { pte = Volatile.Read(ref pageRef); } while (pte != 0 && Interlocked.CompareExchange(ref pageRef, (pte & invTagMask) | tag, pte) != pte); pageStart++; } } /// <summary> /// Obtains a memory tracking handle for the given virtual region. This should be disposed when finished with. /// </summary> /// <param name="address">CPU virtual address of the region</param> /// <param name="size">Size of the region</param> /// <returns>The memory tracking handle</returns> public CpuRegionHandle BeginTracking(ulong address, ulong size) { return new CpuRegionHandle(Tracking.BeginTracking(address, size)); } /// <summary> /// Obtains a memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with. /// </summary> /// <param name="address">CPU virtual address of the region</param> /// <param name="size">Size of the region</param> /// <param name="granularity">Desired granularity of write tracking</param> /// <returns>The memory tracking handle</returns> public CpuMultiRegionHandle BeginGranularTracking(ulong address, ulong size, ulong granularity) { return new CpuMultiRegionHandle(Tracking.BeginGranularTracking(address, size, granularity)); } /// <summary> /// Obtains a smart memory tracking handle for the given virtual region, with a specified granularity. This should be disposed when finished with. /// </summary> /// <param name="address">CPU virtual address of the region</param> /// <param name="size">Size of the region</param> /// <param name="granularity">Desired granularity of write tracking</param> /// <returns>The memory tracking handle</returns> public CpuSmartMultiRegionHandle BeginSmartGranularTracking(ulong address, ulong size, ulong granularity) { return new CpuSmartMultiRegionHandle(Tracking.BeginSmartGranularTracking(address, size, granularity)); } /// <summary> /// Alerts the memory tracking that a given region has been read from or written to. /// This should be called before read/write is performed. /// </summary> /// <param name="va">Virtual address of the region</param> /// <param name="size">Size of the region</param> public void SignalMemoryTracking(ulong va, ulong size, bool write) { AssertValidAddressAndSize(va, size); // We emulate guard pages for software memory access. This makes for an easy transition to // tracking using host guard pages in future, but also supporting platforms where this is not possible. // Write tag includes read protection, since we don't have any read actions that aren't performed before write too. long tag = (write ? 3L : 1L) << PointerTagBit; int pages = GetPagesCount(va, (uint)size, out _); ulong pageStart = va >> PageBits; for (int page = 0; page < pages; page++) { ref long pageRef = ref _pageTable.GetRef<long>(pageStart * PteSize); long pte; pte = Volatile.Read(ref pageRef); if ((pte & tag) != 0) { Tracking.VirtualMemoryEvent(va, size, write); break; } pageStart++; } } private ulong PaToPte(ulong pa) { return (ulong)_backingMemory.GetPointer(pa, PageSize).ToInt64(); } private ulong PteToPa(ulong pte) { return (ulong)((long)pte - _backingMemory.Pointer.ToInt64()); } /// <summary> /// Disposes of resources used by the memory manager. /// </summary> public void Dispose() => _pageTable.Dispose(); } }