0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2024-12-23 11:05:45 +00:00
ryujinx-fork/Ryujinx.Graphics/Graphics3d/Texture/ASTCDecoder.cs
Thomas Guillemard 884b4e5fd3 Initial non 2D textures support (#525)
* Initial non 2D textures support

- Shaders still need to be changed
- Some types aren't yet implemented

* Start implementing texture instructions suffixes

Fix wrong texture type with cube and TEXS

Also support array textures in TEX and TEX.B

Clean up TEX and TEXS coords managment

Fix TEXS.LL with non-2d textures

Implement TEX.AOFFI

Get the right arguments for TEX, TEXS and TLDS

Also, store suffix operands in appropriate values to support multiple
suffix combinaisons

* Support depth in read/writeTexture

Also support WrapR and detect mipmap

* Proper cube map textures support + fix TEXS.LZ

* Implement depth compare

* some code clean up

* Implement CubeMap textures in OGLTexture.Create

* Implement TLD4 and TLD4S

* Add Texture 1D support

* updates comments

* fix some code style issues

* Fix some nits + rename some things to be less confusing

* Remove GetSuffix local functions

* AOFFI => AOffI

* TextureType => GalTextureTarget

* finish renaming TextureType to TextureTarget

* Disable LL, LZ and LB support in the decompiler

This needs more work at the GL level (GLSL implementation should be
right)

* Revert "Disable LL, LZ and LB support in the decompiler"

This reverts commit 64536c3d9f673645faff3152838d1413c3203395.

* Fix TEXS ARRAY_2D index

* ImageFormat depth should be 1 for all image format

* Fix shader build issues with sampler1DShadow and texture

* Fix DC & AOFFI combinaison with TEX/TEXS

* Support AOFFI with TLD4 and TLD4S

* Fix shader compilation error for TLD4.AOFFI with no DC

* Fix binding isuses on the 2d copy engine

TODO: support 2d array copy

* Support 2D array copy operation in the 2D engine

This make every copy right in the GPU side.
Thie CPU copy probably needs to be updated

* Implement GetGpuSize + fix somes issues with 2d engine copies

TODO: mipmap level in it

* Don't throw an exception in the layer handling

* Fix because of rebase

* Reject 2d layers of non textures in 2d copy engine

* Add 3D textures and mipmap support on BlockLinearSwizzle

* Fix naming on new BitUtils methods

* gpu cache: Make sure to invalidate textures that doesn't have the same target

* Add the concept of layer count for array instead of using depth

Also cleanup GetGpuSize as Swizzle can compute the size with mipmap

* Support multi layer with mip map in ReadTexture

* Add more check for cache invalidation & remove cubemap and cubemap array code for now

Also fix compressed 2d array

* Fix texelFetchOffset shader build error

* Start looking into cube map again

Also add some way to log write in register in engines

* fix write register log levles

* Remove debug logs in WriteRegister

* Disable AOFFI support on non NVIDIA drivers

* Fix code align
2019-02-28 12:12:24 +11:00

1385 lines
48 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
namespace Ryujinx.Graphics.Texture
{
public class ASTCDecoderException : Exception
{
public ASTCDecoderException(string ExMsg) : base(ExMsg) { }
}
//https://github.com/GammaUNC/FasTC/blob/master/ASTCEncoder/src/Decompressor.cpp
public static class ASTCDecoder
{
struct TexelWeightParams
{
public int Width;
public int Height;
public bool DualPlane;
public int MaxWeight;
public bool Error;
public bool VoidExtentLDR;
public bool VoidExtentHDR;
public int GetPackedBitSize()
{
// How many indices do we have?
int Indices = Height * Width;
if (DualPlane)
{
Indices *= 2;
}
IntegerEncoded IntEncoded = IntegerEncoded.CreateEncoding(MaxWeight);
return IntEncoded.GetBitLength(Indices);
}
public int GetNumWeightValues()
{
int Ret = Width * Height;
if (DualPlane)
{
Ret *= 2;
}
return Ret;
}
}
public static byte[] DecodeToRGBA8888(
byte[] InputBuffer,
int BlockX,
int BlockY,
int BlockZ,
int X,
int Y,
int Z)
{
using (MemoryStream InputStream = new MemoryStream(InputBuffer))
{
BinaryReader BinReader = new BinaryReader(InputStream);
if (BlockX > 12 || BlockY > 12)
{
throw new ASTCDecoderException("Block size unsupported!");
}
if (BlockZ != 1 || Z != 1)
{
// TODO: Support 3D textures?
throw new ASTCDecoderException("3D compressed textures unsupported!");
}
using (MemoryStream OutputStream = new MemoryStream())
{
int BlockIndex = 0;
for (int j = 0; j < Y; j += BlockY)
{
for (int i = 0; i < X; i += BlockX)
{
int[] DecompressedData = new int[144];
DecompressBlock(BinReader.ReadBytes(0x10), DecompressedData, BlockX, BlockY);
int DecompressedWidth = Math.Min(BlockX, X - i);
int DecompressedHeight = Math.Min(BlockY, Y - j);
int BaseOffsets = (j * X + i) * 4;
for (int jj = 0; jj < DecompressedHeight; jj++)
{
OutputStream.Seek(BaseOffsets + jj * X * 4, SeekOrigin.Begin);
byte[] OutputBuffer = new byte[DecompressedData.Length * sizeof(int)];
Buffer.BlockCopy(DecompressedData, 0, OutputBuffer, 0, OutputBuffer.Length);
OutputStream.Write(OutputBuffer, jj * BlockX * 4, DecompressedWidth * 4);
}
BlockIndex++;
}
}
return OutputStream.ToArray();
}
}
}
public static bool DecompressBlock(
byte[] InputBuffer,
int[] OutputBuffer,
int BlockWidth,
int BlockHeight)
{
BitArrayStream BitStream = new BitArrayStream(new BitArray(InputBuffer));
TexelWeightParams TexelParams = DecodeBlockInfo(BitStream);
if (TexelParams.Error)
{
throw new ASTCDecoderException("Invalid block mode");
}
if (TexelParams.VoidExtentLDR)
{
FillVoidExtentLDR(BitStream, OutputBuffer, BlockWidth, BlockHeight);
return true;
}
if (TexelParams.VoidExtentHDR)
{
throw new ASTCDecoderException("HDR void extent blocks are unsupported!");
}
if (TexelParams.Width > BlockWidth)
{
throw new ASTCDecoderException("Texel weight grid width should be smaller than block width");
}
if (TexelParams.Height > BlockHeight)
{
throw new ASTCDecoderException("Texel weight grid height should be smaller than block height");
}
// Read num partitions
int NumberPartitions = BitStream.ReadBits(2) + 1;
Debug.Assert(NumberPartitions <= 4);
if (NumberPartitions == 4 && TexelParams.DualPlane)
{
throw new ASTCDecoderException("Dual plane mode is incompatible with four partition blocks");
}
// Based on the number of partitions, read the color endpoint mode for
// each partition.
// Determine partitions, partition index, and color endpoint modes
int PlaneIndices = -1;
int PartitionIndex;
uint[] ColorEndpointMode = { 0, 0, 0, 0 };
BitArrayStream ColorEndpointStream = new BitArrayStream(new BitArray(16 * 8));
// Read extra config data...
uint BaseColorEndpointMode = 0;
if (NumberPartitions == 1)
{
ColorEndpointMode[0] = (uint)BitStream.ReadBits(4);
PartitionIndex = 0;
}
else
{
PartitionIndex = BitStream.ReadBits(10);
BaseColorEndpointMode = (uint)BitStream.ReadBits(6);
}
uint BaseMode = (BaseColorEndpointMode & 3);
// Remaining bits are color endpoint data...
int NumberWeightBits = TexelParams.GetPackedBitSize();
int RemainingBits = 128 - NumberWeightBits - BitStream.Position;
// Consider extra bits prior to texel data...
uint ExtraColorEndpointModeBits = 0;
if (BaseMode != 0)
{
switch (NumberPartitions)
{
case 2: ExtraColorEndpointModeBits += 2; break;
case 3: ExtraColorEndpointModeBits += 5; break;
case 4: ExtraColorEndpointModeBits += 8; break;
default: Debug.Assert(false); break;
}
}
RemainingBits -= (int)ExtraColorEndpointModeBits;
// Do we have a dual plane situation?
int PlaneSelectorBits = 0;
if (TexelParams.DualPlane)
{
PlaneSelectorBits = 2;
}
RemainingBits -= PlaneSelectorBits;
// Read color data...
int ColorDataBits = RemainingBits;
while (RemainingBits > 0)
{
int NumberBits = Math.Min(RemainingBits, 8);
int Bits = BitStream.ReadBits(NumberBits);
ColorEndpointStream.WriteBits(Bits, NumberBits);
RemainingBits -= 8;
}
// Read the plane selection bits
PlaneIndices = BitStream.ReadBits(PlaneSelectorBits);
// Read the rest of the CEM
if (BaseMode != 0)
{
uint ExtraColorEndpointMode = (uint)BitStream.ReadBits((int)ExtraColorEndpointModeBits);
uint TempColorEndpointMode = (ExtraColorEndpointMode << 6) | BaseColorEndpointMode;
TempColorEndpointMode >>= 2;
bool[] C = new bool[4];
for (int i = 0; i < NumberPartitions; i++)
{
C[i] = (TempColorEndpointMode & 1) != 0;
TempColorEndpointMode >>= 1;
}
byte[] M = new byte[4];
for (int i = 0; i < NumberPartitions; i++)
{
M[i] = (byte)(TempColorEndpointMode & 3);
TempColorEndpointMode >>= 2;
Debug.Assert(M[i] <= 3);
}
for (int i = 0; i < NumberPartitions; i++)
{
ColorEndpointMode[i] = BaseMode;
if (!(C[i])) ColorEndpointMode[i] -= 1;
ColorEndpointMode[i] <<= 2;
ColorEndpointMode[i] |= M[i];
}
}
else if (NumberPartitions > 1)
{
uint TempColorEndpointMode = BaseColorEndpointMode >> 2;
for (uint i = 0; i < NumberPartitions; i++)
{
ColorEndpointMode[i] = TempColorEndpointMode;
}
}
// Make sure everything up till here is sane.
for (int i = 0; i < NumberPartitions; i++)
{
Debug.Assert(ColorEndpointMode[i] < 16);
}
Debug.Assert(BitStream.Position + TexelParams.GetPackedBitSize() == 128);
// Decode both color data and texel weight data
int[] ColorValues = new int[32]; // Four values * two endpoints * four maximum partitions
DecodeColorValues(ColorValues, ColorEndpointStream.ToByteArray(), ColorEndpointMode, NumberPartitions, ColorDataBits);
ASTCPixel[][] EndPoints = new ASTCPixel[4][];
EndPoints[0] = new ASTCPixel[2];
EndPoints[1] = new ASTCPixel[2];
EndPoints[2] = new ASTCPixel[2];
EndPoints[3] = new ASTCPixel[2];
int ColorValuesPosition = 0;
for (int i = 0; i < NumberPartitions; i++)
{
ComputeEndpoints(EndPoints[i], ColorValues, ColorEndpointMode[i], ref ColorValuesPosition);
}
// Read the texel weight data.
byte[] TexelWeightData = (byte[])InputBuffer.Clone();
// Reverse everything
for (int i = 0; i < 8; i++)
{
byte a = ReverseByte(TexelWeightData[i]);
byte b = ReverseByte(TexelWeightData[15 - i]);
TexelWeightData[i] = b;
TexelWeightData[15 - i] = a;
}
// Make sure that higher non-texel bits are set to zero
int ClearByteStart = (TexelParams.GetPackedBitSize() >> 3) + 1;
TexelWeightData[ClearByteStart - 1] &= (byte)((1 << (TexelParams.GetPackedBitSize() % 8)) - 1);
int cLen = 16 - ClearByteStart;
for (int i = ClearByteStart; i < ClearByteStart + cLen; i++) TexelWeightData[i] = 0;
List<IntegerEncoded> TexelWeightValues = new List<IntegerEncoded>();
BitArrayStream WeightBitStream = new BitArrayStream(new BitArray(TexelWeightData));
IntegerEncoded.DecodeIntegerSequence(TexelWeightValues, WeightBitStream, TexelParams.MaxWeight, TexelParams.GetNumWeightValues());
// Blocks can be at most 12x12, so we can have as many as 144 weights
int[][] Weights = new int[2][];
Weights[0] = new int[144];
Weights[1] = new int[144];
UnquantizeTexelWeights(Weights, TexelWeightValues, TexelParams, BlockWidth, BlockHeight);
// Now that we have endpoints and weights, we can interpolate and generate
// the proper decoding...
for (int j = 0; j < BlockHeight; j++)
{
for (int i = 0; i < BlockWidth; i++)
{
int Partition = Select2DPartition(PartitionIndex, i, j, NumberPartitions, ((BlockHeight * BlockWidth) < 32));
Debug.Assert(Partition < NumberPartitions);
ASTCPixel Pixel = new ASTCPixel(0, 0, 0, 0);
for (int Component = 0; Component < 4; Component++)
{
int Component0 = EndPoints[Partition][0].GetComponent(Component);
Component0 = BitArrayStream.Replicate(Component0, 8, 16);
int Component1 = EndPoints[Partition][1].GetComponent(Component);
Component1 = BitArrayStream.Replicate(Component1, 8, 16);
int Plane = 0;
if (TexelParams.DualPlane && (((PlaneIndices + 1) & 3) == Component))
{
Plane = 1;
}
int Weight = Weights[Plane][j * BlockWidth + i];
int FinalComponent = (Component0 * (64 - Weight) + Component1 * Weight + 32) / 64;
if (FinalComponent == 65535)
{
Pixel.SetComponent(Component, 255);
}
else
{
double FinalComponentFloat = FinalComponent;
Pixel.SetComponent(Component, (int)(255.0 * (FinalComponentFloat / 65536.0) + 0.5));
}
}
OutputBuffer[j * BlockWidth + i] = Pixel.Pack();
}
}
return true;
}
private static int Select2DPartition(int Seed, int X, int Y, int PartitionCount, bool IsSmallBlock)
{
return SelectPartition(Seed, X, Y, 0, PartitionCount, IsSmallBlock);
}
private static int SelectPartition(int Seed, int X, int Y, int Z, int PartitionCount, bool IsSmallBlock)
{
if (PartitionCount == 1)
{
return 0;
}
if (IsSmallBlock)
{
X <<= 1;
Y <<= 1;
Z <<= 1;
}
Seed += (PartitionCount - 1) * 1024;
int RightNum = Hash52((uint)Seed);
byte Seed01 = (byte)(RightNum & 0xF);
byte Seed02 = (byte)((RightNum >> 4) & 0xF);
byte Seed03 = (byte)((RightNum >> 8) & 0xF);
byte Seed04 = (byte)((RightNum >> 12) & 0xF);
byte Seed05 = (byte)((RightNum >> 16) & 0xF);
byte Seed06 = (byte)((RightNum >> 20) & 0xF);
byte Seed07 = (byte)((RightNum >> 24) & 0xF);
byte Seed08 = (byte)((RightNum >> 28) & 0xF);
byte Seed09 = (byte)((RightNum >> 18) & 0xF);
byte Seed10 = (byte)((RightNum >> 22) & 0xF);
byte Seed11 = (byte)((RightNum >> 26) & 0xF);
byte Seed12 = (byte)(((RightNum >> 30) | (RightNum << 2)) & 0xF);
Seed01 *= Seed01; Seed02 *= Seed02;
Seed03 *= Seed03; Seed04 *= Seed04;
Seed05 *= Seed05; Seed06 *= Seed06;
Seed07 *= Seed07; Seed08 *= Seed08;
Seed09 *= Seed09; Seed10 *= Seed10;
Seed11 *= Seed11; Seed12 *= Seed12;
int SeedHash1, SeedHash2, SeedHash3;
if ((Seed & 1) != 0)
{
SeedHash1 = (Seed & 2) != 0 ? 4 : 5;
SeedHash2 = (PartitionCount == 3) ? 6 : 5;
}
else
{
SeedHash1 = (PartitionCount == 3) ? 6 : 5;
SeedHash2 = (Seed & 2) != 0 ? 4 : 5;
}
SeedHash3 = (Seed & 0x10) != 0 ? SeedHash1 : SeedHash2;
Seed01 >>= SeedHash1; Seed02 >>= SeedHash2; Seed03 >>= SeedHash1; Seed04 >>= SeedHash2;
Seed05 >>= SeedHash1; Seed06 >>= SeedHash2; Seed07 >>= SeedHash1; Seed08 >>= SeedHash2;
Seed09 >>= SeedHash3; Seed10 >>= SeedHash3; Seed11 >>= SeedHash3; Seed12 >>= SeedHash3;
int a = Seed01 * X + Seed02 * Y + Seed11 * Z + (RightNum >> 14);
int b = Seed03 * X + Seed04 * Y + Seed12 * Z + (RightNum >> 10);
int c = Seed05 * X + Seed06 * Y + Seed09 * Z + (RightNum >> 6);
int d = Seed07 * X + Seed08 * Y + Seed10 * Z + (RightNum >> 2);
a &= 0x3F; b &= 0x3F; c &= 0x3F; d &= 0x3F;
if (PartitionCount < 4) d = 0;
if (PartitionCount < 3) c = 0;
if (a >= b && a >= c && a >= d) return 0;
else if (b >= c && b >= d) return 1;
else if (c >= d) return 2;
return 3;
}
static int Hash52(uint Val)
{
Val ^= Val >> 15; Val -= Val << 17; Val += Val << 7; Val += Val << 4;
Val ^= Val >> 5; Val += Val << 16; Val ^= Val >> 7; Val ^= Val >> 3;
Val ^= Val << 6; Val ^= Val >> 17;
return (int)Val;
}
static void UnquantizeTexelWeights(
int[][] OutputBuffer,
List<IntegerEncoded> Weights,
TexelWeightParams TexelParams,
int BlockWidth,
int BlockHeight)
{
int WeightIndices = 0;
int[][] Unquantized = new int[2][];
Unquantized[0] = new int[144];
Unquantized[1] = new int[144];
for (int i = 0; i < Weights.Count; i++)
{
Unquantized[0][WeightIndices] = UnquantizeTexelWeight(Weights[i]);
if (TexelParams.DualPlane)
{
i++;
Unquantized[1][WeightIndices] = UnquantizeTexelWeight(Weights[i]);
if (i == Weights.Count)
{
break;
}
}
if (++WeightIndices >= (TexelParams.Width * TexelParams.Height)) break;
}
// Do infill if necessary (Section C.2.18) ...
int Ds = (1024 + (BlockWidth / 2)) / (BlockWidth - 1);
int Dt = (1024 + (BlockHeight / 2)) / (BlockHeight - 1);
int PlaneScale = TexelParams.DualPlane ? 2 : 1;
for (int Plane = 0; Plane < PlaneScale; Plane++)
{
for (int t = 0; t < BlockHeight; t++)
{
for (int s = 0; s < BlockWidth; s++)
{
int cs = Ds * s;
int ct = Dt * t;
int gs = (cs * (TexelParams.Width - 1) + 32) >> 6;
int gt = (ct * (TexelParams.Height - 1) + 32) >> 6;
int js = gs >> 4;
int fs = gs & 0xF;
int jt = gt >> 4;
int ft = gt & 0x0F;
int w11 = (fs * ft + 8) >> 4;
int w10 = ft - w11;
int w01 = fs - w11;
int w00 = 16 - fs - ft + w11;
int v0 = js + jt * TexelParams.Width;
int p00 = 0;
int p01 = 0;
int p10 = 0;
int p11 = 0;
if (v0 < (TexelParams.Width * TexelParams.Height))
{
p00 = Unquantized[Plane][v0];
}
if (v0 + 1 < (TexelParams.Width * TexelParams.Height))
{
p01 = Unquantized[Plane][v0 + 1];
}
if (v0 + TexelParams.Width < (TexelParams.Width * TexelParams.Height))
{
p10 = Unquantized[Plane][v0 + TexelParams.Width];
}
if (v0 + TexelParams.Width + 1 < (TexelParams.Width * TexelParams.Height))
{
p11 = Unquantized[Plane][v0 + TexelParams.Width + 1];
}
OutputBuffer[Plane][t * BlockWidth + s] = (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
}
}
}
}
static int UnquantizeTexelWeight(IntegerEncoded IntEncoded)
{
int BitValue = IntEncoded.BitValue;
int BitLength = IntEncoded.NumberBits;
int A = BitArrayStream.Replicate(BitValue & 1, 1, 7);
int B = 0, C = 0, D = 0;
int Result = 0;
switch (IntEncoded.GetEncoding())
{
case IntegerEncoded.EIntegerEncoding.JustBits:
Result = BitArrayStream.Replicate(BitValue, BitLength, 6);
break;
case IntegerEncoded.EIntegerEncoding.Trit:
{
D = IntEncoded.TritValue;
Debug.Assert(D < 3);
switch (BitLength)
{
case 0:
{
int[] Results = { 0, 32, 63 };
Result = Results[D];
break;
}
case 1:
{
C = 50;
break;
}
case 2:
{
C = 23;
int b = (BitValue >> 1) & 1;
B = (b << 6) | (b << 2) | b;
break;
}
case 3:
{
C = 11;
int cb = (BitValue >> 1) & 3;
B = (cb << 5) | cb;
break;
}
default:
throw new ASTCDecoderException("Invalid trit encoding for texel weight");
}
break;
}
case IntegerEncoded.EIntegerEncoding.Quint:
{
D = IntEncoded.QuintValue;
Debug.Assert(D < 5);
switch (BitLength)
{
case 0:
{
int[] Results = { 0, 16, 32, 47, 63 };
Result = Results[D];
break;
}
case 1:
{
C = 28;
break;
}
case 2:
{
C = 13;
int b = (BitValue >> 1) & 1;
B = (b << 6) | (b << 1);
break;
}
default:
throw new ASTCDecoderException("Invalid quint encoding for texel weight");
}
break;
}
}
if (IntEncoded.GetEncoding() != IntegerEncoded.EIntegerEncoding.JustBits && BitLength > 0)
{
// Decode the value...
Result = D * C + B;
Result ^= A;
Result = (A & 0x20) | (Result >> 2);
}
Debug.Assert(Result < 64);
// Change from [0,63] to [0,64]
if (Result > 32)
{
Result += 1;
}
return Result;
}
static byte ReverseByte(byte b)
{
// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
return (byte)((((b) * 0x80200802L) & 0x0884422110L) * 0x0101010101L >> 32);
}
static uint[] ReadUintColorValues(int Number, int[] ColorValues, ref int ColorValuesPosition)
{
uint[] Ret = new uint[Number];
for (int i = 0; i < Number; i++)
{
Ret[i] = (uint)ColorValues[ColorValuesPosition++];
}
return Ret;
}
static int[] ReadIntColorValues(int Number, int[] ColorValues, ref int ColorValuesPosition)
{
int[] Ret = new int[Number];
for (int i = 0; i < Number; i++)
{
Ret[i] = ColorValues[ColorValuesPosition++];
}
return Ret;
}
static void ComputeEndpoints(
ASTCPixel[] EndPoints,
int[] ColorValues,
uint ColorEndpointMode,
ref int ColorValuesPosition)
{
switch (ColorEndpointMode)
{
case 0:
{
uint[] Val = ReadUintColorValues(2, ColorValues, ref ColorValuesPosition);
EndPoints[0] = new ASTCPixel(0xFF, (short)Val[0], (short)Val[0], (short)Val[0]);
EndPoints[1] = new ASTCPixel(0xFF, (short)Val[1], (short)Val[1], (short)Val[1]);
break;
}
case 1:
{
uint[] Val = ReadUintColorValues(2, ColorValues, ref ColorValuesPosition);
int L0 = (int)((Val[0] >> 2) | (Val[1] & 0xC0));
int L1 = (int)Math.Max(L0 + (Val[1] & 0x3F), 0xFFU);
EndPoints[0] = new ASTCPixel(0xFF, (short)L0, (short)L0, (short)L0);
EndPoints[1] = new ASTCPixel(0xFF, (short)L1, (short)L1, (short)L1);
break;
}
case 4:
{
uint[] Val = ReadUintColorValues(4, ColorValues, ref ColorValuesPosition);
EndPoints[0] = new ASTCPixel((short)Val[2], (short)Val[0], (short)Val[0], (short)Val[0]);
EndPoints[1] = new ASTCPixel((short)Val[3], (short)Val[1], (short)Val[1], (short)Val[1]);
break;
}
case 5:
{
int[] Val = ReadIntColorValues(4, ColorValues, ref ColorValuesPosition);
BitArrayStream.BitTransferSigned(ref Val[1], ref Val[0]);
BitArrayStream.BitTransferSigned(ref Val[3], ref Val[2]);
EndPoints[0] = new ASTCPixel((short)Val[2], (short)Val[0], (short)Val[0], (short)Val[0]);
EndPoints[1] = new ASTCPixel((short)(Val[2] + Val[3]), (short)(Val[0] + Val[1]), (short)(Val[0] + Val[1]), (short)(Val[0] + Val[1]));
EndPoints[0].ClampByte();
EndPoints[1].ClampByte();
break;
}
case 6:
{
uint[] Val = ReadUintColorValues(4, ColorValues, ref ColorValuesPosition);
EndPoints[0] = new ASTCPixel(0xFF, (short)(Val[0] * Val[3] >> 8), (short)(Val[1] * Val[3] >> 8), (short)(Val[2] * Val[3] >> 8));
EndPoints[1] = new ASTCPixel(0xFF, (short)Val[0], (short)Val[1], (short)Val[2]);
break;
}
case 8:
{
uint[] Val = ReadUintColorValues(6, ColorValues, ref ColorValuesPosition);
if (Val[1] + Val[3] + Val[5] >= Val[0] + Val[2] + Val[4])
{
EndPoints[0] = new ASTCPixel(0xFF, (short)Val[0], (short)Val[2], (short)Val[4]);
EndPoints[1] = new ASTCPixel(0xFF, (short)Val[1], (short)Val[3], (short)Val[5]);
}
else
{
EndPoints[0] = ASTCPixel.BlueContract(0xFF, (short)Val[1], (short)Val[3], (short)Val[5]);
EndPoints[1] = ASTCPixel.BlueContract(0xFF, (short)Val[0], (short)Val[2], (short)Val[4]);
}
break;
}
case 9:
{
int[] Val = ReadIntColorValues(6, ColorValues, ref ColorValuesPosition);
BitArrayStream.BitTransferSigned(ref Val[1], ref Val[0]);
BitArrayStream.BitTransferSigned(ref Val[3], ref Val[2]);
BitArrayStream.BitTransferSigned(ref Val[5], ref Val[4]);
if (Val[1] + Val[3] + Val[5] >= 0)
{
EndPoints[0] = new ASTCPixel(0xFF, (short)Val[0], (short)Val[2], (short)Val[4]);
EndPoints[1] = new ASTCPixel(0xFF, (short)(Val[0] + Val[1]), (short)(Val[2] + Val[3]), (short)(Val[4] + Val[5]));
}
else
{
EndPoints[0] = ASTCPixel.BlueContract(0xFF, Val[0] + Val[1], Val[2] + Val[3], Val[4] + Val[5]);
EndPoints[1] = ASTCPixel.BlueContract(0xFF, Val[0], Val[2], Val[4]);
}
EndPoints[0].ClampByte();
EndPoints[1].ClampByte();
break;
}
case 10:
{
uint[] Val = ReadUintColorValues(6, ColorValues, ref ColorValuesPosition);
EndPoints[0] = new ASTCPixel((short)Val[4], (short)(Val[0] * Val[3] >> 8), (short)(Val[1] * Val[3] >> 8), (short)(Val[2] * Val[3] >> 8));
EndPoints[1] = new ASTCPixel((short)Val[5], (short)Val[0], (short)Val[1], (short)Val[2]);
break;
}
case 12:
{
uint[] Val = ReadUintColorValues(8, ColorValues, ref ColorValuesPosition);
if (Val[1] + Val[3] + Val[5] >= Val[0] + Val[2] + Val[4])
{
EndPoints[0] = new ASTCPixel((short)Val[6], (short)Val[0], (short)Val[2], (short)Val[4]);
EndPoints[1] = new ASTCPixel((short)Val[7], (short)Val[1], (short)Val[3], (short)Val[5]);
}
else
{
EndPoints[0] = ASTCPixel.BlueContract((short)Val[7], (short)Val[1], (short)Val[3], (short)Val[5]);
EndPoints[1] = ASTCPixel.BlueContract((short)Val[6], (short)Val[0], (short)Val[2], (short)Val[4]);
}
break;
}
case 13:
{
int[] Val = ReadIntColorValues(8, ColorValues, ref ColorValuesPosition);
BitArrayStream.BitTransferSigned(ref Val[1], ref Val[0]);
BitArrayStream.BitTransferSigned(ref Val[3], ref Val[2]);
BitArrayStream.BitTransferSigned(ref Val[5], ref Val[4]);
BitArrayStream.BitTransferSigned(ref Val[7], ref Val[6]);
if (Val[1] + Val[3] + Val[5] >= 0)
{
EndPoints[0] = new ASTCPixel((short)Val[6], (short)Val[0], (short)Val[2], (short)Val[4]);
EndPoints[1] = new ASTCPixel((short)(Val[7] + Val[6]), (short)(Val[0] + Val[1]), (short)(Val[2] + Val[3]), (short)(Val[4] + Val[5]));
}
else
{
EndPoints[0] = ASTCPixel.BlueContract(Val[6] + Val[7], Val[0] + Val[1], Val[2] + Val[3], Val[4] + Val[5]);
EndPoints[1] = ASTCPixel.BlueContract(Val[6], Val[0], Val[2], Val[4]);
}
EndPoints[0].ClampByte();
EndPoints[1].ClampByte();
break;
}
default:
throw new ASTCDecoderException("Unsupported color endpoint mode (is it HDR?)");
}
}
static void DecodeColorValues(
int[] OutputValues,
byte[] InputData,
uint[] Modes,
int NumberPartitions,
int NumberBitsForColorData)
{
// First figure out how many color values we have
int NumberValues = 0;
for (int i = 0; i < NumberPartitions; i++)
{
NumberValues += (int)((Modes[i] >> 2) + 1) << 1;
}
// Then based on the number of values and the remaining number of bits,
// figure out the max value for each of them...
int Range = 256;
while (--Range > 0)
{
IntegerEncoded IntEncoded = IntegerEncoded.CreateEncoding(Range);
int BitLength = IntEncoded.GetBitLength(NumberValues);
if (BitLength <= NumberBitsForColorData)
{
// Find the smallest possible range that matches the given encoding
while (--Range > 0)
{
IntegerEncoded NewIntEncoded = IntegerEncoded.CreateEncoding(Range);
if (!NewIntEncoded.MatchesEncoding(IntEncoded))
{
break;
}
}
// Return to last matching range.
Range++;
break;
}
}
// We now have enough to decode our integer sequence.
List<IntegerEncoded> IntegerEncodedSequence = new List<IntegerEncoded>();
BitArrayStream ColorBitStream = new BitArrayStream(new BitArray(InputData));
IntegerEncoded.DecodeIntegerSequence(IntegerEncodedSequence, ColorBitStream, Range, NumberValues);
// Once we have the decoded values, we need to dequantize them to the 0-255 range
// This procedure is outlined in ASTC spec C.2.13
int OutputIndices = 0;
foreach (IntegerEncoded IntEncoded in IntegerEncodedSequence)
{
int BitLength = IntEncoded.NumberBits;
int BitValue = IntEncoded.BitValue;
Debug.Assert(BitLength >= 1);
int A = 0, B = 0, C = 0, D = 0;
// A is just the lsb replicated 9 times.
A = BitArrayStream.Replicate(BitValue & 1, 1, 9);
switch (IntEncoded.GetEncoding())
{
case IntegerEncoded.EIntegerEncoding.JustBits:
{
OutputValues[OutputIndices++] = BitArrayStream.Replicate(BitValue, BitLength, 8);
break;
}
case IntegerEncoded.EIntegerEncoding.Trit:
{
D = IntEncoded.TritValue;
switch (BitLength)
{
case 1:
{
C = 204;
break;
}
case 2:
{
C = 93;
// B = b000b0bb0
int b = (BitValue >> 1) & 1;
B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
break;
}
case 3:
{
C = 44;
// B = cb000cbcb
int cb = (BitValue >> 1) & 3;
B = (cb << 7) | (cb << 2) | cb;
break;
}
case 4:
{
C = 22;
// B = dcb000dcb
int dcb = (BitValue >> 1) & 7;
B = (dcb << 6) | dcb;
break;
}
case 5:
{
C = 11;
// B = edcb000ed
int edcb = (BitValue >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 2);
break;
}
case 6:
{
C = 5;
// B = fedcb000f
int fedcb = (BitValue >> 1) & 0x1F;
B = (fedcb << 4) | (fedcb >> 4);
break;
}
default:
throw new ASTCDecoderException("Unsupported trit encoding for color values!");
}
break;
}
case IntegerEncoded.EIntegerEncoding.Quint:
{
D = IntEncoded.QuintValue;
switch (BitLength)
{
case 1:
{
C = 113;
break;
}
case 2:
{
C = 54;
// B = b0000bb00
int b = (BitValue >> 1) & 1;
B = (b << 8) | (b << 3) | (b << 2);
break;
}
case 3:
{
C = 26;
// B = cb0000cbc
int cb = (BitValue >> 1) & 3;
B = (cb << 7) | (cb << 1) | (cb >> 1);
break;
}
case 4:
{
C = 13;
// B = dcb0000dc
int dcb = (BitValue >> 1) & 7;
B = (dcb << 6) | (dcb >> 1);
break;
}
case 5:
{
C = 6;
// B = edcb0000e
int edcb = (BitValue >> 1) & 0xF;
B = (edcb << 5) | (edcb >> 3);
break;
}
default:
throw new ASTCDecoderException("Unsupported quint encoding for color values!");
}
break;
}
}
if (IntEncoded.GetEncoding() != IntegerEncoded.EIntegerEncoding.JustBits)
{
int T = D * C + B;
T ^= A;
T = (A & 0x80) | (T >> 2);
OutputValues[OutputIndices++] = T;
}
}
// Make sure that each of our values is in the proper range...
for (int i = 0; i < NumberValues; i++)
{
Debug.Assert(OutputValues[i] <= 255);
}
}
static void FillVoidExtentLDR(BitArrayStream BitStream, int[] OutputBuffer, int BlockWidth, int BlockHeight)
{
// Don't actually care about the void extent, just read the bits...
for (int i = 0; i < 4; ++i)
{
BitStream.ReadBits(13);
}
// Decode the RGBA components and renormalize them to the range [0, 255]
ushort R = (ushort)BitStream.ReadBits(16);
ushort G = (ushort)BitStream.ReadBits(16);
ushort B = (ushort)BitStream.ReadBits(16);
ushort A = (ushort)BitStream.ReadBits(16);
int RGBA = (R >> 8) | (G & 0xFF00) | ((B) & 0xFF00) << 8 | ((A) & 0xFF00) << 16;
for (int j = 0; j < BlockHeight; j++)
{
for (int i = 0; i < BlockWidth; i++)
{
OutputBuffer[j * BlockWidth + i] = RGBA;
}
}
}
static TexelWeightParams DecodeBlockInfo(BitArrayStream BitStream)
{
TexelWeightParams TexelParams = new TexelWeightParams();
// Read the entire block mode all at once
ushort ModeBits = (ushort)BitStream.ReadBits(11);
// Does this match the void extent block mode?
if ((ModeBits & 0x01FF) == 0x1FC)
{
if ((ModeBits & 0x200) != 0)
{
TexelParams.VoidExtentHDR = true;
}
else
{
TexelParams.VoidExtentLDR = true;
}
// Next two bits must be one.
if ((ModeBits & 0x400) == 0 || BitStream.ReadBits(1) == 0)
{
TexelParams.Error = true;
}
return TexelParams;
}
// First check if the last four bits are zero
if ((ModeBits & 0xF) == 0)
{
TexelParams.Error = true;
return TexelParams;
}
// If the last two bits are zero, then if bits
// [6-8] are all ones, this is also reserved.
if ((ModeBits & 0x3) == 0 && (ModeBits & 0x1C0) == 0x1C0)
{
TexelParams.Error = true;
return TexelParams;
}
// Otherwise, there is no error... Figure out the layout
// of the block mode. Layout is determined by a number
// between 0 and 9 corresponding to table C.2.8 of the
// ASTC spec.
int Layout = 0;
if ((ModeBits & 0x1) != 0 || (ModeBits & 0x2) != 0)
{
// layout is in [0-4]
if ((ModeBits & 0x8) != 0)
{
// layout is in [2-4]
if ((ModeBits & 0x4) != 0)
{
// layout is in [3-4]
if ((ModeBits & 0x100) != 0)
{
Layout = 4;
}
else
{
Layout = 3;
}
}
else
{
Layout = 2;
}
}
else
{
// layout is in [0-1]
if ((ModeBits & 0x4) != 0)
{
Layout = 1;
}
else
{
Layout = 0;
}
}
}
else
{
// layout is in [5-9]
if ((ModeBits & 0x100) != 0)
{
// layout is in [7-9]
if ((ModeBits & 0x80) != 0)
{
// layout is in [7-8]
Debug.Assert((ModeBits & 0x40) == 0);
if ((ModeBits & 0x20) != 0)
{
Layout = 8;
}
else
{
Layout = 7;
}
}
else
{
Layout = 9;
}
}
else
{
// layout is in [5-6]
if ((ModeBits & 0x80) != 0)
{
Layout = 6;
}
else
{
Layout = 5;
}
}
}
Debug.Assert(Layout < 10);
// Determine R
int R = (ModeBits >> 4) & 1;
if (Layout < 5)
{
R |= (ModeBits & 0x3) << 1;
}
else
{
R |= (ModeBits & 0xC) >> 1;
}
Debug.Assert(2 <= R && R <= 7);
// Determine width & height
switch (Layout)
{
case 0:
{
int A = (ModeBits >> 5) & 0x3;
int B = (ModeBits >> 7) & 0x3;
TexelParams.Width = B + 4;
TexelParams.Height = A + 2;
break;
}
case 1:
{
int A = (ModeBits >> 5) & 0x3;
int B = (ModeBits >> 7) & 0x3;
TexelParams.Width = B + 8;
TexelParams.Height = A + 2;
break;
}
case 2:
{
int A = (ModeBits >> 5) & 0x3;
int B = (ModeBits >> 7) & 0x3;
TexelParams.Width = A + 2;
TexelParams.Height = B + 8;
break;
}
case 3:
{
int A = (ModeBits >> 5) & 0x3;
int B = (ModeBits >> 7) & 0x1;
TexelParams.Width = A + 2;
TexelParams.Height = B + 6;
break;
}
case 4:
{
int A = (ModeBits >> 5) & 0x3;
int B = (ModeBits >> 7) & 0x1;
TexelParams.Width = B + 2;
TexelParams.Height = A + 2;
break;
}
case 5:
{
int A = (ModeBits >> 5) & 0x3;
TexelParams.Width = 12;
TexelParams.Height = A + 2;
break;
}
case 6:
{
int A = (ModeBits >> 5) & 0x3;
TexelParams.Width = A + 2;
TexelParams.Height = 12;
break;
}
case 7:
{
TexelParams.Width = 6;
TexelParams.Height = 10;
break;
}
case 8:
{
TexelParams.Width = 10;
TexelParams.Height = 6;
break;
}
case 9:
{
int A = (ModeBits >> 5) & 0x3;
int B = (ModeBits >> 9) & 0x3;
TexelParams.Width = A + 6;
TexelParams.Height = B + 6;
break;
}
default:
//Don't know this layout...
TexelParams.Error = true;
break;
}
// Determine whether or not we're using dual planes
// and/or high precision layouts.
bool D = ((Layout != 9) && ((ModeBits & 0x400) != 0));
bool H = (Layout != 9) && ((ModeBits & 0x200) != 0);
if (H)
{
int[] MaxWeights = { 9, 11, 15, 19, 23, 31 };
TexelParams.MaxWeight = MaxWeights[R - 2];
}
else
{
int[] MaxWeights = { 1, 2, 3, 4, 5, 7 };
TexelParams.MaxWeight = MaxWeights[R - 2];
}
TexelParams.DualPlane = D;
return TexelParams;
}
}
}