0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2024-12-23 18:05:46 +00:00
ryujinx-fork/Ryujinx.Memory.Tests/TrackingTests.cs
riperiperi a1f77a5b6a
Implement lazy flush-on-read for Buffers (SSBO/Copy) (#1790)
* Initial implementation of buffer flush (VERY WIP)

* Host shaders need to be rebuilt for the SSBO write flag.

* New approach with reserved regions and gl sync

* Fix a ton of buffer issues.

* Remove unused buffer unmapped behaviour

* Revert "Remove unused buffer unmapped behaviour"

This reverts commit f1700e52fb8760180ac5e0987a07d409d1e70ece.

* Delete modified ranges on unmap

Fixes potential crashes in Super Smash Bros, where a previously modified range could lie on either side of an unmap.

* Cache some more delegates.

* Dispose Sync on Close

* Also create host sync for GPFifo syncpoint increment.

* Copy buffer optimization, add docs

* Fix race condition with OpenGL Sync

* Enable read tracking on CommandBuffer, insert syncpoint on WaitForIdle

* Performance: Only flush individual pages of SSBO at a time

This avoids flushing large amounts of data when only a small amount is actually used.

* Signal Modified rather than flushing after clear

* Fix some docs and code style.

* Introduce a new test for tracking memory protection.

Sucessfully demonstrates that the bug causing write protection to be cleared by a read action has been fixed. (these tests fail on master)

* Address Comments

* Add host sync for SetReference

This ensures that any indirect draws will correctly flush any related buffer data written before them. Fixes some flashing and misplaced world geometry in MH rise.

* Make PageAlign static

* Re-enable read tracking, for reads.
2021-01-17 17:08:06 -03:00

488 lines
18 KiB
C#

using NUnit.Framework;
using Ryujinx.Memory.Tracking;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;
namespace Ryujinx.Memory.Tests
{
public class TrackingTests
{
private const int RndCnt = 3;
private const ulong MemorySize = 0x8000;
private const int PageSize = 4096;
private MemoryBlock _memoryBlock;
private MemoryTracking _tracking;
private MockVirtualMemoryManager _memoryManager;
[SetUp]
public void Setup()
{
_memoryBlock = new MemoryBlock(MemorySize);
_memoryManager = new MockVirtualMemoryManager(MemorySize, PageSize);
_tracking = new MemoryTracking(_memoryManager, _memoryBlock, PageSize);
}
[TearDown]
public void Teardown()
{
_memoryBlock.Dispose();
}
private bool TestSingleWrite(RegionHandle handle, ulong address, ulong size, bool physical = false)
{
handle.Reprotect();
if (physical)
{
_tracking.PhysicalMemoryEvent(address, true);
}
else
{
_tracking.VirtualMemoryEvent(address, size, true);
}
return handle.Dirty;
}
[Test]
public void SingleRegion()
{
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
(ulong address, ulong size)? readTrackingTriggered = null;
handle.RegisterAction((address, size) =>
{
readTrackingTriggered = (address, size);
});
bool dirtyInitial = handle.Dirty;
Assert.True(dirtyInitial); // Handle starts dirty.
handle.Reprotect();
bool dirtyAfterReprotect = handle.Dirty;
Assert.False(dirtyAfterReprotect); // Handle is no longer dirty.
_tracking.VirtualMemoryEvent(PageSize * 2, 4, true);
_tracking.VirtualMemoryEvent(PageSize * 2, 4, false);
bool dirtyAfterUnrelatedReadWrite = handle.Dirty;
Assert.False(dirtyAfterUnrelatedReadWrite); // Not dirtied, as the write was to an unrelated address.
Assert.IsNull(readTrackingTriggered); // Hasn't been triggered yet
_tracking.VirtualMemoryEvent(0, 4, false);
bool dirtyAfterRelatedRead = handle.Dirty;
Assert.False(dirtyAfterRelatedRead); // Only triggers on write.
Assert.AreEqual(readTrackingTriggered, (0UL, 4UL)); // Read action was triggered.
readTrackingTriggered = null;
_tracking.VirtualMemoryEvent(0, 4, true);
bool dirtyAfterRelatedWrite = handle.Dirty;
Assert.True(dirtyAfterRelatedWrite); // Dirty flag should now be set.
_tracking.VirtualMemoryEvent(4, 4, true);
bool dirtyAfterRelatedWrite2 = handle.Dirty;
Assert.True(dirtyAfterRelatedWrite2); // Dirty flag should still be set.
handle.Reprotect();
bool dirtyAfterReprotect2 = handle.Dirty;
Assert.False(dirtyAfterReprotect2); // Handle is no longer dirty.
handle.Dispose();
bool dirtyAfterDispose = TestSingleWrite(handle, 0, 4);
Assert.False(dirtyAfterDispose); // Handle cannot be triggered when disposed
bool dirtyAfterDispose2 = TestSingleWrite(handle, 0, 4, true);
Assert.False(dirtyAfterDispose2);
}
[Test]
public void OverlappingRegions()
{
RegionHandle allHandle = _tracking.BeginTracking(0, PageSize * 16);
allHandle.Reprotect();
(ulong address, ulong size)? readTrackingTriggeredAll = null;
Action registerReadAction = () =>
{
readTrackingTriggeredAll = null;
allHandle.RegisterAction((address, size) =>
{
readTrackingTriggeredAll = (address, size);
});
};
registerReadAction();
// Create 16 page sized handles contained within the allHandle.
RegionHandle[] containedHandles = new RegionHandle[16];
for (int i = 0; i < 16; i++)
{
containedHandles[i] = _tracking.BeginTracking((ulong)i * PageSize, PageSize);
containedHandles[i].Reprotect();
}
for (int i = 0; i < 16; i++)
{
// No handles are dirty.
Assert.False(allHandle.Dirty);
Assert.IsNull(readTrackingTriggeredAll);
for (int j = 0; j < 16; j++)
{
Assert.False(containedHandles[j].Dirty);
}
_tracking.VirtualMemoryEvent((ulong)i * PageSize, 1, true);
// Only the handle covering the entire range and the relevant contained handle are dirty.
Assert.True(allHandle.Dirty);
Assert.AreEqual(readTrackingTriggeredAll, ((ulong)i * PageSize, 1UL)); // Triggered read tracking
for (int j = 0; j < 16; j++)
{
if (j == i)
{
Assert.True(containedHandles[j].Dirty);
}
else
{
Assert.False(containedHandles[j].Dirty);
}
}
// Clear flags and reset read action.
registerReadAction();
allHandle.Reprotect();
containedHandles[i].Reprotect();
}
}
[Test]
public void PageAlignment(
[Values(1ul, 512ul, 2048ul, 4096ul, 65536ul)] [Random(1ul, 65536ul, RndCnt)] ulong address,
[Values(1ul, 4ul, 1024ul, 4096ul, 65536ul)] [Random(1ul, 65536ul, RndCnt)] ulong size)
{
ulong alignedStart = (address / PageSize) * PageSize;
ulong alignedEnd = ((address + size + PageSize - 1) / PageSize) * PageSize;
ulong alignedSize = alignedEnd - alignedStart;
RegionHandle handle = _tracking.BeginTracking(address, size);
// Anywhere inside the pages the region is contained on should trigger.
bool originalRangeTriggers = TestSingleWrite(handle, address, size);
Assert.True(originalRangeTriggers);
bool alignedRangeTriggers = TestSingleWrite(handle, alignedStart, alignedSize);
Assert.True(alignedRangeTriggers);
bool alignedStartTriggers = TestSingleWrite(handle, alignedStart, 1);
Assert.True(alignedStartTriggers);
bool alignedEndTriggers = TestSingleWrite(handle, alignedEnd - 1, 1);
Assert.True(alignedEndTriggers);
// Outside the tracked range should not trigger.
bool alignedBeforeTriggers = TestSingleWrite(handle, alignedStart - 1, 1);
Assert.False(alignedBeforeTriggers);
bool alignedAfterTriggers = TestSingleWrite(handle, alignedEnd, 1);
Assert.False(alignedAfterTriggers);
}
[Test, Timeout(1000)]
public void Multithreading()
{
// Multithreading sanity test
// Multiple threads can easily read/write memory regions from any existing handle.
// Handles can also be owned by different threads, though they should have one owner thread.
// Handles can be created and disposed at any time, by any thread.
// This test should not throw or deadlock due to invalid state.
const int threadCount = 1;
const int handlesPerThread = 16;
long finishedTime = 0;
RegionHandle[] handles = new RegionHandle[threadCount * handlesPerThread];
Random globalRand = new Random();
for (int i = 0; i < handles.Length; i++)
{
handles[i] = _tracking.BeginTracking((ulong)i * PageSize, PageSize);
handles[i].Reprotect();
}
List<Thread> testThreads = new List<Thread>();
// Dirty flag consumer threads
int dirtyFlagReprotects = 0;
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
testThreads.Add(new Thread(() =>
{
int handleBase = randSeed * handlesPerThread;
while (Stopwatch.GetTimestamp() < finishedTime)
{
Random random = new Random(randSeed);
RegionHandle handle = handles[handleBase + random.Next(handlesPerThread)];
if (handle.Dirty)
{
handle.Reprotect();
Interlocked.Increment(ref dirtyFlagReprotects);
}
}
}));
}
// Write trigger threads
int writeTriggers = 0;
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
testThreads.Add(new Thread(() =>
{
Random random = new Random(randSeed);
ulong handleBase = (ulong)(randSeed * handlesPerThread * PageSize);
while (Stopwatch.GetTimestamp() < finishedTime)
{
_tracking.VirtualMemoryEvent(handleBase + (ulong)random.Next(PageSize * handlesPerThread), PageSize / 2, true);
Interlocked.Increment(ref writeTriggers);
}
}));
}
// Handle create/delete threads
int handleLifecycles = 0;
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
testThreads.Add(new Thread(() =>
{
int maxAddress = threadCount * handlesPerThread * PageSize;
Random random = new Random(randSeed + 512);
while (Stopwatch.GetTimestamp() < finishedTime)
{
RegionHandle handle = _tracking.BeginTracking((ulong)random.Next(maxAddress), (ulong)random.Next(65536));
handle.Dispose();
Interlocked.Increment(ref handleLifecycles);
}
}));
}
finishedTime = Stopwatch.GetTimestamp() + Stopwatch.Frequency / 2; // Run for 500ms;
foreach (Thread thread in testThreads)
{
thread.Start();
}
foreach (Thread thread in testThreads)
{
thread.Join();
}
Assert.Greater(dirtyFlagReprotects, 10);
Assert.Greater(writeTriggers, 10);
Assert.Greater(handleLifecycles, 10);
}
[Test]
public void ReadActionThreadConsumption()
{
// Read actions should only be triggered once for each registration.
// The implementation should use an interlocked exchange to make sure other threads can't get the action.
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
int triggeredCount = 0;
int registeredCount = 0;
int signalThreadsDone = 0;
bool isRegistered = false;
Action registerReadAction = () =>
{
registeredCount++;
handle.RegisterAction((address, size) =>
{
isRegistered = false;
Interlocked.Increment(ref triggeredCount);
});
};
const int threadCount = 16;
const int iterationCount = 10000;
Thread[] signalThreads = new Thread[threadCount];
for (int i = 0; i < threadCount; i++)
{
int randSeed = i;
signalThreads[i] = new Thread(() =>
{
Random random = new Random(randSeed);
for (int j = 0; j < iterationCount; j++)
{
_tracking.VirtualMemoryEvent((ulong)random.Next(PageSize), 4, false);
}
Interlocked.Increment(ref signalThreadsDone);
});
}
for (int i = 0; i < threadCount; i++)
{
signalThreads[i].Start();
}
while (signalThreadsDone != -1)
{
if (signalThreadsDone == threadCount)
{
signalThreadsDone = -1;
}
if (!isRegistered)
{
isRegistered = true;
registerReadAction();
}
}
// The action should trigger exactly once for every registration,
// then we register once after all the threads signalling it cease.
Assert.AreEqual(registeredCount, triggeredCount + 1);
}
[Test]
public void PhysicalMemoryMapping()
{
// Tracking is done in the virtual space usually, but we also support tracking on physical regions.
// The physical regions that make up a virtual region are determined when the region is created,
// or when a mapping changes.
// These tests verify that the region cannot be signalled after unmapping, and can after remapping.
RegionHandle handle = _tracking.BeginTracking(PageSize, PageSize);
Assert.True(handle.Dirty);
bool trackedWriteTriggers = TestSingleWrite(handle, PageSize, 1, true);
Assert.True(trackedWriteTriggers);
_memoryManager.NoMappings = true;
_tracking.Unmap(PageSize, PageSize);
bool unmappedWriteTriggers = TestSingleWrite(handle, PageSize, 1, true);
Assert.False(unmappedWriteTriggers);
_memoryManager.NoMappings = false;
_tracking.Map(PageSize, PageSize, PageSize);
bool remappedWriteTriggers = TestSingleWrite(handle, PageSize, 1, true);
Assert.True(remappedWriteTriggers);
}
[Test]
public void DisposeHandles()
{
// Ensure that disposed handles correctly remove their virtual and physical regions.
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
handle.Reprotect();
Assert.AreEqual((1, 1), _tracking.GetRegionCounts());
handle.Dispose();
Assert.AreEqual((0, 0), _tracking.GetRegionCounts());
// Two handles, small entirely contains big.
// We expect there to be three regions after creating both, one for the small region and two covering the big one around it.
// Regions are always split to avoid overlapping, which is why there are three instead of two.
RegionHandle handleSmall = _tracking.BeginTracking(PageSize, PageSize);
RegionHandle handleBig = _tracking.BeginTracking(0, PageSize * 4);
Assert.AreEqual((3, 3), _tracking.GetRegionCounts());
// After disposing the big region, only the small one will remain.
handleBig.Dispose();
Assert.AreEqual((1, 1), _tracking.GetRegionCounts());
handleSmall.Dispose();
Assert.AreEqual((0, 0), _tracking.GetRegionCounts());
}
[Test]
public void ReadAndWriteProtection()
{
MemoryPermission protection = MemoryPermission.ReadAndWrite;
_memoryManager.OnProtect += (va, size, newProtection) =>
{
Assert.AreEqual((0, PageSize), (va, size)); // Should protect the exact region all the operations use.
protection = newProtection;
};
RegionHandle handle = _tracking.BeginTracking(0, PageSize);
// After creating the handle, there is no protection yet.
Assert.AreEqual(MemoryPermission.ReadAndWrite, protection);
bool dirtyInitial = handle.Dirty;
Assert.True(dirtyInitial); // Handle starts dirty.
handle.Reprotect();
// After a reprotect, there is write protection, which will set a dirty flag when any write happens.
Assert.AreEqual(MemoryPermission.Read, protection);
(ulong address, ulong size)? readTrackingTriggered = null;
handle.RegisterAction((address, size) =>
{
readTrackingTriggered = (address, size);
});
// Registering an action adds read/write protection.
Assert.AreEqual(MemoryPermission.None, protection);
bool dirtyAfterReprotect = handle.Dirty;
Assert.False(dirtyAfterReprotect); // Handle is no longer dirty.
// First we should read, which will trigger the action. This _should not_ remove write protection on the memory.
_tracking.VirtualMemoryEvent(0, 4, false);
bool dirtyAfterRead = handle.Dirty;
Assert.False(dirtyAfterRead); // Not dirtied, as this was a read.
Assert.AreEqual(readTrackingTriggered, (0UL, 4UL)); // Read action was triggered.
Assert.AreEqual(MemoryPermission.Read, protection); // Write protection is still present.
readTrackingTriggered = null;
// Now, perform a write.
_tracking.VirtualMemoryEvent(0, 4, true);
bool dirtyAfterWriteAfterRead = handle.Dirty;
Assert.True(dirtyAfterWriteAfterRead); // Should be dirty.
Assert.AreEqual(MemoryPermission.ReadAndWrite, protection); // All protection is now be removed from the memory.
Assert.IsNull(readTrackingTriggered); // Read tracking was removed when the action fired, as it can only fire once.
handle.Dispose();
}
}
}