0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2025-01-25 19:41:58 +00:00
ryujinx-fork/Ryujinx.Graphics.Nvdec.Vp9/DecodeMv.cs
gdkchan 4d02a2d2c0
New NVDEC and VIC implementation (#1384)
* Initial NVDEC and VIC implementation

* Update FFmpeg.AutoGen to 4.3.0

* Add nvdec dependencies for Windows

* Unify some VP9 structures

* Rename VP9 structure fields

* Improvements to Video API

* XML docs for Common.Memory

* Remove now unused or redundant overloads from MemoryAccessor

* NVDEC UV surface read/write scalar paths

* Add FIXME comments about hacky things/stuff that will need to be fixed in the future

* Cleaned up VP9 memory allocation

* Remove some debug logs

* Rename some VP9 structs

* Remove unused struct

* No need to compile Ryujinx.Graphics.Host1x with unsafe anymore

* Name AsyncWorkQueue threads to make debugging easier

* Make Vp9PictureInfo a ref struct

* LayoutConverter no longer needs the depth argument (broken by rebase)

* Pooling of VP9 buffers, plus fix a memory leak on VP9

* Really wish VS could rename projects properly...

* Address feedback

* Remove using

* Catch OperationCanceledException

* Add licensing informations

* Add THIRDPARTY.md to release too

Co-authored-by: Thog <me@thog.eu>
2020-07-12 05:07:01 +02:00

1159 lines
42 KiB
C#

using Ryujinx.Common.Memory;
using Ryujinx.Graphics.Nvdec.Vp9.Dsp;
using Ryujinx.Graphics.Nvdec.Vp9.Types;
using Ryujinx.Graphics.Video;
using System;
using System.Diagnostics;
using System.Runtime.CompilerServices;
using Mv = Ryujinx.Graphics.Nvdec.Vp9.Types.Mv;
using MvRef = Ryujinx.Graphics.Nvdec.Vp9.Types.MvRef;
namespace Ryujinx.Graphics.Nvdec.Vp9
{
internal static class DecodeMv
{
private const int MvrefNeighbours = 8;
private static PredictionMode ReadIntraMode(ref Reader r, ReadOnlySpan<byte> p)
{
return (PredictionMode)r.ReadTree(Luts.Vp9IntraModeTree, p);
}
private static PredictionMode ReadIntraModeY(ref Vp9Common cm, ref MacroBlockD xd, ref Reader r, int sizeGroup)
{
PredictionMode yMode = ReadIntraMode(ref r, cm.Fc.Value.YModeProb[sizeGroup].ToSpan());
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.YMode[sizeGroup][(int)yMode];
}
return yMode;
}
private static PredictionMode ReadIntraModeUv(ref Vp9Common cm, ref MacroBlockD xd, ref Reader r, byte yMode)
{
PredictionMode uvMode = ReadIntraMode(ref r, cm.Fc.Value.UvModeProb[yMode].ToSpan());
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.UvMode[yMode][(int)uvMode];
}
return uvMode;
}
private static PredictionMode ReadInterMode(ref Vp9Common cm, ref MacroBlockD xd, ref Reader r, int ctx)
{
int mode = r.ReadTree(Luts.Vp9InterModeTree, cm.Fc.Value.InterModeProb[ctx].ToSpan());
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.InterMode[ctx][mode];
}
return PredictionMode.NearestMv + mode;
}
private static int ReadSegmentId(ref Reader r, ref Array7<byte> segTreeProbs)
{
return r.ReadTree(Luts.Vp9SegmentTree, segTreeProbs.ToSpan());
}
private static ReadOnlySpan<byte> GetTxProbs(ref Vp9EntropyProbs fc, TxSize maxTxSize, int ctx)
{
switch (maxTxSize)
{
case TxSize.Tx8x8: return fc.Tx8x8Prob[ctx].ToSpan();
case TxSize.Tx16x16: return fc.Tx16x16Prob[ctx].ToSpan();
case TxSize.Tx32x32: return fc.Tx32x32Prob[ctx].ToSpan();
default: Debug.Assert(false, "Invalid maxTxSize."); return ReadOnlySpan<byte>.Empty;
}
}
private static Span<uint> GetTxCounts(ref Vp9BackwardUpdates counts, TxSize maxTxSize, int ctx)
{
switch (maxTxSize)
{
case TxSize.Tx8x8: return counts.Tx8x8[ctx].ToSpan();
case TxSize.Tx16x16: return counts.Tx16x16[ctx].ToSpan();
case TxSize.Tx32x32: return counts.Tx32x32[ctx].ToSpan();
default: Debug.Assert(false, "Invalid maxTxSize."); return Span<uint>.Empty;
}
}
private static TxSize ReadSelectedTxSize(ref Vp9Common cm, ref MacroBlockD xd, TxSize maxTxSize, ref Reader r)
{
int ctx = xd.GetTxSizeContext();
ReadOnlySpan<byte> txProbs = GetTxProbs(ref cm.Fc.Value, maxTxSize, ctx);
TxSize txSize = (TxSize)r.Read(txProbs[0]);
if (txSize != TxSize.Tx4x4 && maxTxSize >= TxSize.Tx16x16)
{
txSize += r.Read(txProbs[1]);
if (txSize != TxSize.Tx8x8 && maxTxSize >= TxSize.Tx32x32)
{
txSize += r.Read(txProbs[2]);
}
}
if (!xd.Counts.IsNull)
{
++GetTxCounts(ref xd.Counts.Value, maxTxSize, ctx)[(int)txSize];
}
return txSize;
}
private static TxSize ReadTxSize(ref Vp9Common cm, ref MacroBlockD xd, bool allowSelect, ref Reader r)
{
TxMode txMode = cm.TxMode;
BlockSize bsize = xd.Mi[0].Value.SbType;
TxSize maxTxSize = Luts.MaxTxSizeLookup[(int)bsize];
if (allowSelect && txMode == TxMode.TxModeSelect && bsize >= BlockSize.Block8x8)
{
return ReadSelectedTxSize(ref cm, ref xd, maxTxSize, ref r);
}
else
{
return (TxSize)Math.Min((int)maxTxSize, (int)Luts.TxModeToBiggestTxSize[(int)txMode]);
}
}
private static int DecGetSegmentId(ref Vp9Common cm, ArrayPtr<byte> segmentIds, int miOffset, int xMis, int yMis)
{
int x, y, segmentId = int.MaxValue;
for (y = 0; y < yMis; y++)
{
for (x = 0; x < xMis; x++)
{
segmentId = Math.Min(segmentId, segmentIds[miOffset + y * cm.MiCols + x]);
}
}
Debug.Assert(segmentId >= 0 && segmentId < Constants.MaxSegments);
return segmentId;
}
private static void SetSegmentId(ref Vp9Common cm, int miOffset, int xMis, int yMis, int segmentId)
{
int x, y;
Debug.Assert(segmentId >= 0 && segmentId < Constants.MaxSegments);
for (y = 0; y < yMis; y++)
{
for (x = 0; x < xMis; x++)
{
cm.CurrentFrameSegMap[miOffset + y * cm.MiCols + x] = (byte)segmentId;
}
}
}
private static void CopySegmentId(
ref Vp9Common cm,
ArrayPtr<byte> lastSegmentIds,
ArrayPtr<byte> currentSegmentIds,
int miOffset,
int xMis,
int yMis)
{
int x, y;
for (y = 0; y < yMis; y++)
{
for (x = 0; x < xMis; x++)
{
currentSegmentIds[miOffset + y * cm.MiCols + x] = (byte)(!lastSegmentIds.IsNull ? lastSegmentIds[miOffset + y * cm.MiCols + x] : 0);
}
}
}
private static int ReadIntraSegmentId(ref Vp9Common cm, int miOffset, int xMis, int yMis, ref Reader r)
{
ref Segmentation seg = ref cm.Seg;
int segmentId;
if (!seg.Enabled)
{
return 0; // Default for disabled segmentation
}
if (!seg.UpdateMap)
{
CopySegmentId(ref cm, cm.LastFrameSegMap, cm.CurrentFrameSegMap, miOffset, xMis, yMis);
return 0;
}
segmentId = ReadSegmentId(ref r, ref cm.Fc.Value.SegTreeProb);
SetSegmentId(ref cm, miOffset, xMis, yMis, segmentId);
return segmentId;
}
private static int ReadInterSegmentId(
ref Vp9Common cm,
ref MacroBlockD xd,
int miRow,
int miCol,
ref Reader r,
int xMis,
int yMis)
{
ref Segmentation seg = ref cm.Seg;
ref ModeInfo mi = ref xd.Mi[0].Value;
int predictedSegmentId, segmentId;
int miOffset = miRow * cm.MiCols + miCol;
if (!seg.Enabled)
{
return 0; // Default for disabled segmentation
}
predictedSegmentId = !cm.LastFrameSegMap.IsNull
? DecGetSegmentId(ref cm, cm.LastFrameSegMap, miOffset, xMis, yMis)
: 0;
if (!seg.UpdateMap)
{
CopySegmentId(ref cm, cm.LastFrameSegMap, cm.CurrentFrameSegMap, miOffset, xMis, yMis);
return predictedSegmentId;
}
if (seg.TemporalUpdate)
{
byte predProb = Segmentation.GetPredProbSegId(ref cm.Fc.Value.SegPredProb, ref xd);
mi.SegIdPredicted = (sbyte)r.Read(predProb);
segmentId = mi.SegIdPredicted != 0 ? predictedSegmentId : ReadSegmentId(ref r, ref cm.Fc.Value.SegTreeProb);
}
else
{
segmentId = ReadSegmentId(ref r, ref cm.Fc.Value.SegTreeProb);
}
SetSegmentId(ref cm, miOffset, xMis, yMis, segmentId);
return segmentId;
}
private static int ReadSkip(ref Vp9Common cm, ref MacroBlockD xd, int segmentId, ref Reader r)
{
if (cm.Seg.IsSegFeatureActive(segmentId, SegLvlFeatures.SegLvlSkip) != 0)
{
return 1;
}
else
{
int ctx = xd.GetSkipContext();
int skip = r.Read(cm.Fc.Value.SkipProb[ctx]);
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.Skip[ctx][skip];
}
return skip;
}
}
private static int ReadMvComponent(ref Reader r, ref Vp9EntropyProbs fc, int mvcomp, bool usehp)
{
int mag, d, fr, hp;
bool sign = r.Read(fc.Sign[mvcomp]) != 0;
MvClassType mvClass = (MvClassType)r.ReadTree(Luts.Vp9MvClassTree, fc.Classes[mvcomp].ToSpan());
bool class0 = mvClass == MvClassType.MvClass0;
// Integer part
if (class0)
{
d = r.Read(fc.Class0[mvcomp][0]);
mag = 0;
}
else
{
int i;
int n = (int)mvClass + Constants.Class0Bits - 1; // Number of bits
d = 0;
for (i = 0; i < n; ++i)
{
d |= r.Read(fc.Bits[mvcomp][i]) << i;
}
mag = Constants.Class0Size << ((int)mvClass + 2);
}
// Fractional part
fr = r.ReadTree(Luts.Vp9MvFPTree, class0 ? fc.Class0Fp[mvcomp][d].ToSpan() : fc.Fp[mvcomp].ToSpan());
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? r.Read(class0 ? fc.Class0Hp[mvcomp] : fc.Hp[mvcomp]) : 1;
// Result
mag += ((d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
private static void ReadMv(
ref Reader r,
ref Mv mv,
ref Mv refr,
ref Vp9EntropyProbs fc,
Ptr<Vp9BackwardUpdates> counts,
bool allowHP)
{
MvJointType jointType = (MvJointType)r.ReadTree(Luts.Vp9MvJointTree, fc.Joints.ToSpan());
bool useHP = allowHP && refr.UseMvHp();
Mv diff = new Mv();
if (Mv.MvJointVertical(jointType))
{
diff.Row = (short)ReadMvComponent(ref r, ref fc, 0, useHP);
}
if (Mv.MvJointHorizontal(jointType))
{
diff.Col = (short)ReadMvComponent(ref r, ref fc, 1, useHP);
}
diff.IncMv(counts);
mv.Row = (short)(refr.Row + diff.Row);
mv.Col = (short)(refr.Col + diff.Col);
}
private static ReferenceMode ReadBlockReferenceMode(ref Vp9Common cm, ref MacroBlockD xd, ref Reader r)
{
if (cm.ReferenceMode == ReferenceMode.ReferenceModeSelect)
{
int ctx = PredCommon.GetReferenceModeContext(ref cm, ref xd);
ReferenceMode mode = (ReferenceMode)r.Read(cm.Fc.Value.CompInterProb[ctx]);
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.CompInter[ctx][(int)mode];
}
return mode; // SingleReference or CompoundReference
}
else
{
return cm.ReferenceMode;
}
}
// Read the referncence frame
private static void ReadRefFrames(
ref Vp9Common cm,
ref MacroBlockD xd,
ref Reader r,
int segmentId,
ref Array2<sbyte> refFrame)
{
ref Vp9EntropyProbs fc = ref cm.Fc.Value;
if (cm.Seg.IsSegFeatureActive(segmentId, SegLvlFeatures.SegLvlRefFrame) != 0)
{
refFrame[0] = (sbyte)cm.Seg.GetSegData(segmentId, SegLvlFeatures.SegLvlRefFrame);
refFrame[1] = Constants.None;
}
else
{
ReferenceMode mode = ReadBlockReferenceMode(ref cm, ref xd, ref r);
if (mode == ReferenceMode.CompoundReference)
{
int idx = cm.RefFrameSignBias[cm.CompFixedRef];
int ctx = PredCommon.GetPredContextCompRefP(ref cm, ref xd);
int bit = r.Read(fc.CompRefProb[ctx]);
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.CompRef[ctx][bit];
}
refFrame[idx] = cm.CompFixedRef;
refFrame[idx == 0 ? 1 : 0] = cm.CompVarRef[bit];
}
else if (mode == ReferenceMode.SingleReference)
{
int ctx0 = PredCommon.GetPredContextSingleRefP1(ref xd);
int bit0 = r.Read(fc.SingleRefProb[ctx0][0]);
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.SingleRef[ctx0][0][bit0];
}
if (bit0 != 0)
{
int ctx1 = PredCommon.GetPredContextSingleRefP2(ref xd);
int bit1 = r.Read(fc.SingleRefProb[ctx1][1]);
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.SingleRef[ctx1][1][bit1];
}
refFrame[0] = (sbyte)(bit1 != 0 ? Constants.AltRefFrame : Constants.GoldenFrame);
}
else
{
refFrame[0] = Constants.LastFrame;
}
refFrame[1] = Constants.None;
}
else
{
Debug.Assert(false, "Invalid prediction mode.");
}
}
}
private static byte ReadSwitchableInterpFilter(ref Vp9Common cm, ref MacroBlockD xd, ref Reader r)
{
int ctx = xd.GetPredContextSwitchableInterp();
byte type = (byte)r.ReadTree(Luts.Vp9SwitchableInterpTree, cm.Fc.Value.SwitchableInterpProb[ctx].ToSpan());
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.SwitchableInterp[ctx][type];
}
return type;
}
private static void ReadIntraBlockModeInfo(ref Vp9Common cm, ref MacroBlockD xd, ref ModeInfo mi, ref Reader r)
{
BlockSize bsize = mi.SbType;
int i;
switch (bsize)
{
case BlockSize.Block4x4:
for (i = 0; i < 4; ++i)
{
mi.Bmi[i].Mode = ReadIntraModeY(ref cm, ref xd, ref r, 0);
}
mi.Mode = mi.Bmi[3].Mode;
break;
case BlockSize.Block4x8:
mi.Bmi[0].Mode = mi.Bmi[2].Mode = ReadIntraModeY(ref cm, ref xd, ref r, 0);
mi.Bmi[1].Mode = mi.Bmi[3].Mode = mi.Mode = ReadIntraModeY(ref cm, ref xd, ref r, 0);
break;
case BlockSize.Block8x4:
mi.Bmi[0].Mode = mi.Bmi[1].Mode = ReadIntraModeY(ref cm, ref xd, ref r, 0);
mi.Bmi[2].Mode = mi.Bmi[3].Mode = mi.Mode = ReadIntraModeY(ref cm, ref xd, ref r, 0);
break;
default: mi.Mode = ReadIntraModeY(ref cm, ref xd, ref r, Luts.SizeGroupLookup[(int)bsize]); break;
}
mi.UvMode = ReadIntraModeUv(ref cm, ref xd, ref r, (byte)mi.Mode);
// Initialize interp_filter here so we do not have to check for inter block
// modes in GetPredContextSwitchableInterp()
mi.InterpFilter = Constants.SwitchableFilters;
mi.RefFrame[0] = Constants.IntraFrame;
mi.RefFrame[1] = Constants.None;
}
private static bool IsMvValid(ref Mv mv)
{
return mv.Row > Constants.MvLow &&
mv.Row < Constants.MvUpp &&
mv.Col > Constants.MvLow &&
mv.Col < Constants.MvUpp;
}
private static void CopyMvPair(ref Array2<Mv> dst, ref Array2<Mv> src)
{
dst[0] = src[0];
dst[1] = src[1];
}
private static void ZeroMvPair(ref Array2<Mv> dst)
{
dst[0] = new Mv();
dst[1] = new Mv();
}
private static bool AssignMv(
ref Vp9Common cm,
ref MacroBlockD xd,
PredictionMode mode,
ref Array2<Mv> mv,
ref Array2<Mv> refMv,
ref Array2<Mv> nearNearestMv,
int isCompound,
bool allowHP,
ref Reader r)
{
int i;
bool ret = true;
switch (mode)
{
case PredictionMode.NewMv:
{
for (i = 0; i < 1 + isCompound; ++i)
{
ReadMv(ref r, ref mv[i], ref refMv[i], ref cm.Fc.Value, xd.Counts, allowHP);
ret = ret && IsMvValid(ref mv[i]);
}
break;
}
case PredictionMode.NearMv:
case PredictionMode.NearestMv:
{
CopyMvPair(ref mv, ref nearNearestMv);
break;
}
case PredictionMode.ZeroMv:
{
ZeroMvPair(ref mv);
break;
}
default: return false;
}
return ret;
}
private static bool ReadIsInterBlock(ref Vp9Common cm, ref MacroBlockD xd, int segmentId, ref Reader r)
{
if (cm.Seg.IsSegFeatureActive(segmentId, SegLvlFeatures.SegLvlRefFrame) != 0)
{
return cm.Seg.GetSegData(segmentId, SegLvlFeatures.SegLvlRefFrame) != Constants.IntraFrame;
}
else
{
int ctx = xd.GetIntraInterContext();
bool isInter = r.Read(cm.Fc.Value.IntraInterProb[ctx]) != 0;
if (!xd.Counts.IsNull)
{
++xd.Counts.Value.IntraInter[ctx][isInter ? 1 : 0];
}
return isInter;
}
}
private static void DecFindBestRefMvs(bool allowHP, Span<Mv> mvlist, ref Mv bestMv, int refmvCount)
{
int i;
// Make sure all the candidates are properly clamped etc
for (i = 0; i < refmvCount; ++i)
{
mvlist[i].LowerMvPrecision(allowHP);
bestMv = mvlist[i];
}
}
private static bool AddMvRefListEb(Mv mv, ref int refMvCount, Span<Mv> mvRefList, bool earlyBreak)
{
if (refMvCount != 0)
{
if (Unsafe.As<Mv, int>(ref mv) != Unsafe.As<Mv, int>(ref mvRefList[0]))
{
mvRefList[refMvCount] = mv;
refMvCount++;
return true;
}
}
else
{
mvRefList[refMvCount++] = mv;
if (earlyBreak)
{
return true;
}
}
return false;
}
// Performs mv sign inversion if indicated by the reference frame combination.
private static Mv ScaleMv(ref ModeInfo mi, int refr, sbyte thisRefFrame, ref Array4<sbyte> refSignBias)
{
Mv mv = mi.Mv[refr];
if (refSignBias[mi.RefFrame[refr]] != refSignBias[thisRefFrame])
{
mv.Row *= -1;
mv.Col *= -1;
}
return mv;
}
private static bool IsDiffRefFrameAddMvEb(
ref ModeInfo mbmi,
sbyte refFrame,
ref Array4<sbyte> refSignBias,
ref int refmvCount,
Span<Mv> mvRefList,
bool earlyBreak)
{
if (mbmi.IsInterBlock())
{
if (mbmi.RefFrame[0] != refFrame)
{
if (AddMvRefListEb(ScaleMv(ref mbmi, 0, refFrame, ref refSignBias), ref refmvCount, mvRefList, earlyBreak))
{
return true;
}
}
if (mbmi.HasSecondRef() && mbmi.RefFrame[1] != refFrame && Unsafe.As<Mv, int>(ref mbmi.Mv[1]) != Unsafe.As<Mv, int>(ref mbmi.Mv[0]))
{
if (AddMvRefListEb(ScaleMv(ref mbmi, 1, refFrame, ref refSignBias), ref refmvCount, mvRefList, earlyBreak))
{
return true;
}
}
}
return false;
}
// This function searches the neighborhood of a given MB/SB
// to try and find candidate reference vectors.
private static unsafe int DecFindMvRefs(
ref Vp9Common cm,
ref MacroBlockD xd,
PredictionMode mode,
sbyte refFrame,
Span<Position> mvRefSearch,
Span<Mv> mvRefList,
int miRow,
int miCol,
int block,
int isSub8X8)
{
ref Array4<sbyte> refSignBias = ref cm.RefFrameSignBias;
int i, refmvCount = 0;
bool differentRefFound = false;
Ptr<MvRef> prevFrameMvs = cm.UsePrevFrameMvs ? new Ptr<MvRef>(ref cm.PrevFrameMvs[miRow * cm.MiCols + miCol]) : Ptr<MvRef>.Null;
ref TileInfo tile = ref xd.Tile;
// If mode is nearestmv or newmv (uses nearestmv as a reference) then stop
// searching after the first mv is found.
bool earlyBreak = mode != PredictionMode.NearMv;
// Blank the reference vector list
mvRefList.Slice(0, Constants.MaxMvRefCandidates).Fill(new Mv());
i = 0;
if (isSub8X8 != 0)
{
// If the size < 8x8 we get the mv from the bmi substructure for the
// nearest two blocks.
for (i = 0; i < 2; ++i)
{
ref Position mvRef = ref mvRefSearch[i];
if (tile.IsInside(miCol, miRow, cm.MiRows, ref mvRef))
{
ref ModeInfo candidateMi = ref xd.Mi[mvRef.Col + mvRef.Row * xd.MiStride].Value;
differentRefFound = true;
if (candidateMi.RefFrame[0] == refFrame)
{
if (AddMvRefListEb(candidateMi.GetSubBlockMv(0, mvRef.Col, block), ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
else if (candidateMi.RefFrame[1] == refFrame)
{
if (AddMvRefListEb(candidateMi.GetSubBlockMv(1, mvRef.Col, block), ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
}
}
}
// Check the rest of the neighbors in much the same way
// as before except we don't need to keep track of sub blocks or
// mode counts.
for (; i < MvrefNeighbours; ++i)
{
ref Position mvRef = ref mvRefSearch[i];
if (tile.IsInside(miCol, miRow, cm.MiRows, ref mvRef))
{
ref ModeInfo candidate = ref xd.Mi[mvRef.Col + mvRef.Row * xd.MiStride].Value;
differentRefFound = true;
if (candidate.RefFrame[0] == refFrame)
{
if (AddMvRefListEb(candidate.Mv[0], ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
else if (candidate.RefFrame[1] == refFrame)
{
if (AddMvRefListEb(candidate.Mv[1], ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
}
}
// Check the last frame's mode and mv info.
if (!prevFrameMvs.IsNull)
{
if (prevFrameMvs.Value.RefFrame[0] == refFrame)
{
if (AddMvRefListEb(prevFrameMvs.Value.Mv[0], ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
else if (prevFrameMvs.Value.RefFrame[1] == refFrame)
{
if (AddMvRefListEb(prevFrameMvs.Value.Mv[1], ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
}
// Since we couldn't find 2 mvs from the same reference frame
// go back through the neighbors and find motion vectors from
// different reference frames.
if (differentRefFound)
{
for (i = 0; i < MvrefNeighbours; ++i)
{
ref Position mvRef = ref mvRefSearch[i];
if (tile.IsInside(miCol, miRow, cm.MiRows, ref mvRef))
{
ref ModeInfo candidate = ref xd.Mi[mvRef.Col + mvRef.Row * xd.MiStride].Value;
// If the candidate is Intra we don't want to consider its mv.
if (IsDiffRefFrameAddMvEb(ref candidate, refFrame, ref refSignBias, ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
}
}
// Since we still don't have a candidate we'll try the last frame.
if (!prevFrameMvs.IsNull)
{
if (prevFrameMvs.Value.RefFrame[0] != refFrame && prevFrameMvs.Value.RefFrame[0] > Constants.IntraFrame)
{
Mv mv = prevFrameMvs.Value.Mv[0];
if (refSignBias[prevFrameMvs.Value.RefFrame[0]] != refSignBias[refFrame])
{
mv.Row *= -1;
mv.Col *= -1;
}
if (AddMvRefListEb(mv, ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
if (prevFrameMvs.Value.RefFrame[1] > Constants.IntraFrame &&
prevFrameMvs.Value.RefFrame[1] != refFrame &&
Unsafe.As<Mv, int>(ref prevFrameMvs.Value.Mv[1]) != Unsafe.As<Mv, int>(ref prevFrameMvs.Value.Mv[0]))
{
Mv mv = prevFrameMvs.Value.Mv[1];
if (refSignBias[prevFrameMvs.Value.RefFrame[1]] != refSignBias[refFrame])
{
mv.Row *= -1;
mv.Col *= -1;
}
if (AddMvRefListEb(mv, ref refmvCount, mvRefList, earlyBreak))
{
goto Done;
}
}
}
if (mode == PredictionMode.NearMv)
{
refmvCount = Constants.MaxMvRefCandidates;
}
else
{
// We only care about the nearestmv for the remaining modes
refmvCount = 1;
}
Done:
// Clamp vectors
for (i = 0; i < refmvCount; ++i)
{
mvRefList[i].ClampMvRef(ref xd);
}
return refmvCount;
}
private static void AppendSub8x8MvsForIdx(
ref Vp9Common cm,
ref MacroBlockD xd,
Span<Position> mvRefSearch,
PredictionMode bMode,
int block,
int refr,
int miRow,
int miCol,
ref Mv bestSub8x8)
{
Span<Mv> mvList = stackalloc Mv[Constants.MaxMvRefCandidates];
ref ModeInfo mi = ref xd.Mi[0].Value;
ref Array4<BModeInfo> bmi = ref mi.Bmi;
int n;
int refmvCount;
Debug.Assert(Constants.MaxMvRefCandidates == 2);
refmvCount = DecFindMvRefs(ref cm, ref xd, bMode, mi.RefFrame[refr], mvRefSearch, mvList, miRow, miCol, block, 1);
switch (block)
{
case 0: bestSub8x8 = mvList[refmvCount - 1]; break;
case 1:
case 2:
if (bMode == PredictionMode.NearestMv)
{
bestSub8x8 = bmi[0].Mv[refr];
}
else
{
bestSub8x8 = new Mv();
for (n = 0; n < refmvCount; ++n)
{
if (Unsafe.As<Mv, int>(ref bmi[0].Mv[refr]) != Unsafe.As<Mv, int>(ref mvList[n]))
{
bestSub8x8 = mvList[n];
break;
}
}
}
break;
case 3:
if (bMode == PredictionMode.NearestMv)
{
bestSub8x8 = bmi[2].Mv[refr];
}
else
{
Span<Mv> candidates = stackalloc Mv[2 + Constants.MaxMvRefCandidates];
candidates[0] = bmi[1].Mv[refr];
candidates[1] = bmi[0].Mv[refr];
candidates[2] = mvList[0];
candidates[3] = mvList[1];
bestSub8x8 = new Mv();
for (n = 0; n < 2 + Constants.MaxMvRefCandidates; ++n)
{
if (Unsafe.As<Mv, int>(ref bmi[2].Mv[refr]) != Unsafe.As<Mv, int>(ref candidates[n]))
{
bestSub8x8 = candidates[n];
break;
}
}
}
break;
default: Debug.Assert(false, "Invalid block index."); break;
}
}
private static byte GetModeContext(ref Vp9Common cm, ref MacroBlockD xd, Span<Position> mvRefSearch, int miRow, int miCol)
{
int i;
int contextCounter = 0;
ref TileInfo tile = ref xd.Tile;
// Get mode count from nearest 2 blocks
for (i = 0; i < 2; ++i)
{
ref Position mvRef = ref mvRefSearch[i];
if (tile.IsInside(miCol, miRow, cm.MiRows, ref mvRef))
{
ref ModeInfo candidate = ref xd.Mi[mvRef.Col + mvRef.Row * xd.MiStride].Value;
// Keep counts for entropy encoding.
contextCounter += Luts.Mode2Counter[(int)candidate.Mode];
}
}
return (byte)Luts.CounterToContext[contextCounter];
}
private static void ReadInterBlockModeInfo(
ref Vp9Common cm,
ref MacroBlockD xd,
ref ModeInfo mi,
int miRow,
int miCol,
ref Reader r)
{
BlockSize bsize = mi.SbType;
bool allowHP = cm.AllowHighPrecisionMv;
Array2<Mv> bestRefMvs = new Array2<Mv>();
int refr, isCompound;
byte interModeCtx;
Span<Position> mvRefSearch = Luts.MvRefBlocks[(int)bsize];
ReadRefFrames(ref cm, ref xd, ref r, mi.SegmentId, ref mi.RefFrame);
isCompound = mi.HasSecondRef() ? 1 : 0;
interModeCtx = GetModeContext(ref cm, ref xd, mvRefSearch, miRow, miCol);
if (cm.Seg.IsSegFeatureActive(mi.SegmentId, SegLvlFeatures.SegLvlSkip) != 0)
{
mi.Mode = PredictionMode.ZeroMv;
if (bsize < BlockSize.Block8x8)
{
xd.ErrorInfo.Value.InternalError(CodecErr.CodecUnsupBitstream, "Invalid usage of segement feature on small blocks");
return;
}
}
else
{
if (bsize >= BlockSize.Block8x8)
{
mi.Mode = ReadInterMode(ref cm, ref xd, ref r, interModeCtx);
}
else
{
// Sub 8x8 blocks use the nearestmv as a ref_mv if the bMode is NewMv.
// Setting mode to NearestMv forces the search to stop after the nearestmv
// has been found. After bModes have been read, mode will be overwritten
// by the last bMode.
mi.Mode = PredictionMode.NearestMv;
}
if (mi.Mode != PredictionMode.ZeroMv)
{
for (refr = 0; refr < 1 + isCompound; ++refr)
{
Span<Mv> tmpMvs = stackalloc Mv[Constants.MaxMvRefCandidates];
sbyte frame = mi.RefFrame[refr];
int refmvCount;
refmvCount = DecFindMvRefs(ref cm, ref xd, mi.Mode, frame, mvRefSearch, tmpMvs, miRow, miCol, -1, 0);
DecFindBestRefMvs(allowHP, tmpMvs, ref bestRefMvs[refr], refmvCount);
}
}
}
mi.InterpFilter = (cm.InterpFilter == Constants.Switchable) ? ReadSwitchableInterpFilter(ref cm, ref xd, ref r) : cm.InterpFilter;
if (bsize < BlockSize.Block8x8)
{
int num4X4W = 1 << xd.BmodeBlocksWl;
int num4X4H = 1 << xd.BmodeBlocksHl;
int idx, idy;
PredictionMode bMode = 0;
Array2<Mv> bestSub8x8 = new Array2<Mv>();
const uint invalidMv = 0x80008000;
// Initialize the 2nd element as even though it won't be used meaningfully
// if isCompound is false.
Unsafe.As<Mv, uint>(ref bestSub8x8[1]) = invalidMv;
for (idy = 0; idy < 2; idy += num4X4H)
{
for (idx = 0; idx < 2; idx += num4X4W)
{
int j = idy * 2 + idx;
bMode = ReadInterMode(ref cm, ref xd, ref r, interModeCtx);
if (bMode == PredictionMode.NearestMv || bMode == PredictionMode.NearMv)
{
for (refr = 0; refr < 1 + isCompound; ++refr)
{
AppendSub8x8MvsForIdx(ref cm, ref xd, mvRefSearch, bMode, j, refr, miRow, miCol, ref bestSub8x8[refr]);
}
}
if (!AssignMv(ref cm, ref xd, bMode, ref mi.Bmi[j].Mv, ref bestRefMvs, ref bestSub8x8, isCompound, allowHP, ref r))
{
xd.Corrupted |= true;
break;
}
if (num4X4H == 2)
{
mi.Bmi[j + 2] = mi.Bmi[j];
}
if (num4X4W == 2)
{
mi.Bmi[j + 1] = mi.Bmi[j];
}
}
}
mi.Mode = bMode;
CopyMvPair(ref mi.Mv, ref mi.Bmi[3].Mv);
}
else
{
xd.Corrupted |= !AssignMv(ref cm, ref xd, mi.Mode, ref mi.Mv, ref bestRefMvs, ref bestRefMvs, isCompound, allowHP, ref r);
}
}
private static void ReadInterFrameModeInfo(
ref Vp9Common cm,
ref MacroBlockD xd,
int miRow,
int miCol,
ref Reader r,
int xMis,
int yMis)
{
ref ModeInfo mi = ref xd.Mi[0].Value;
bool interBlock;
mi.SegmentId = (sbyte)ReadInterSegmentId(ref cm, ref xd, miRow, miCol, ref r, xMis, yMis);
mi.Skip = (sbyte)ReadSkip(ref cm, ref xd, mi.SegmentId, ref r);
interBlock = ReadIsInterBlock(ref cm, ref xd, mi.SegmentId, ref r);
mi.TxSize = ReadTxSize(ref cm, ref xd, mi.Skip == 0 || !interBlock, ref r);
if (interBlock)
{
ReadInterBlockModeInfo(ref cm, ref xd, ref mi, miRow, miCol, ref r);
}
else
{
ReadIntraBlockModeInfo(ref cm, ref xd, ref mi, ref r);
}
}
private static PredictionMode LeftBlockMode(Ptr<ModeInfo> curMi, Ptr<ModeInfo> leftMi, int b)
{
if (b == 0 || b == 2)
{
if (leftMi.IsNull || leftMi.Value.IsInterBlock())
{
return PredictionMode.DcPred;
}
return leftMi.Value.GetYMode(b + 1);
}
else
{
Debug.Assert(b == 1 || b == 3);
return curMi.Value.Bmi[b - 1].Mode;
}
}
private static PredictionMode AboveBlockMode(Ptr<ModeInfo> curMi, Ptr<ModeInfo> aboveMi, int b)
{
if (b == 0 || b == 1)
{
if (aboveMi.IsNull || aboveMi.Value.IsInterBlock())
{
return PredictionMode.DcPred;
}
return aboveMi.Value.GetYMode(b + 2);
}
else
{
Debug.Assert(b == 2 || b == 3);
return curMi.Value.Bmi[b - 2].Mode;
}
}
private static ReadOnlySpan<byte> GetYModeProbs(
ref Vp9EntropyProbs fc,
Ptr<ModeInfo> mi,
Ptr<ModeInfo> aboveMi,
Ptr<ModeInfo> leftMi,
int block)
{
PredictionMode above = AboveBlockMode(mi, aboveMi, block);
PredictionMode left = LeftBlockMode(mi, leftMi, block);
return fc.KfYModeProb[(int)above][(int)left].ToSpan();
}
private static void ReadIntraFrameModeInfo(
ref Vp9Common cm,
ref MacroBlockD xd,
int miRow,
int miCol,
ref Reader r,
int xMis,
int yMis)
{
Ptr<ModeInfo> mi = xd.Mi[0];
Ptr<ModeInfo> aboveMi = xd.AboveMi;
Ptr<ModeInfo> leftMi = xd.LeftMi;
BlockSize bsize = mi.Value.SbType;
int i;
int miOffset = miRow * cm.MiCols + miCol;
mi.Value.SegmentId = (sbyte)ReadIntraSegmentId(ref cm, miOffset, xMis, yMis, ref r);
mi.Value.Skip = (sbyte)ReadSkip(ref cm, ref xd, mi.Value.SegmentId, ref r);
mi.Value.TxSize = ReadTxSize(ref cm, ref xd, true, ref r);
mi.Value.RefFrame[0] = Constants.IntraFrame;
mi.Value.RefFrame[1] = Constants.None;
switch (bsize)
{
case BlockSize.Block4x4:
for (i = 0; i < 4; ++i)
{
mi.Value.Bmi[i].Mode =
ReadIntraMode(ref r, GetYModeProbs(ref cm.Fc.Value, mi, aboveMi, leftMi, i));
}
mi.Value.Mode = mi.Value.Bmi[3].Mode;
break;
case BlockSize.Block4x8:
mi.Value.Bmi[0].Mode = mi.Value.Bmi[2].Mode =
ReadIntraMode(ref r, GetYModeProbs(ref cm.Fc.Value, mi, aboveMi, leftMi, 0));
mi.Value.Bmi[1].Mode = mi.Value.Bmi[3].Mode = mi.Value.Mode =
ReadIntraMode(ref r, GetYModeProbs(ref cm.Fc.Value, mi, aboveMi, leftMi, 1));
break;
case BlockSize.Block8x4:
mi.Value.Bmi[0].Mode = mi.Value.Bmi[1].Mode =
ReadIntraMode(ref r, GetYModeProbs(ref cm.Fc.Value, mi, aboveMi, leftMi, 0));
mi.Value.Bmi[2].Mode = mi.Value.Bmi[3].Mode = mi.Value.Mode =
ReadIntraMode(ref r, GetYModeProbs(ref cm.Fc.Value, mi, aboveMi, leftMi, 2));
break;
default:
mi.Value.Mode = ReadIntraMode(ref r, GetYModeProbs(ref cm.Fc.Value, mi, aboveMi, leftMi, 0));
break;
}
mi.Value.UvMode = ReadIntraMode(ref r, cm.Fc.Value.KfUvModeProb[(int)mi.Value.Mode].ToSpan());
}
private static void CopyRefFramePair(ref Array2<sbyte> dst, ref Array2<sbyte> src)
{
dst[0] = src[0];
dst[1] = src[1];
}
public static void ReadModeInfo(
ref TileWorkerData twd,
ref Vp9Common cm,
int miRow,
int miCol,
int xMis,
int yMis)
{
ref Reader r = ref twd.BitReader;
ref MacroBlockD xd = ref twd.Xd;
ref ModeInfo mi = ref xd.Mi[0].Value;
ArrayPtr<MvRef> frameMvs = cm.CurFrameMvs.Slice(miRow * cm.MiCols + miCol);
int w, h;
if (cm.FrameIsIntraOnly())
{
ReadIntraFrameModeInfo(ref cm, ref xd, miRow, miCol, ref r, xMis, yMis);
}
else
{
ReadInterFrameModeInfo(ref cm, ref xd, miRow, miCol, ref r, xMis, yMis);
for (h = 0; h < yMis; ++h)
{
for (w = 0; w < xMis; ++w)
{
ref MvRef mv = ref frameMvs[w];
CopyRefFramePair(ref mv.RefFrame, ref mi.RefFrame);
CopyMvPair(ref mv.Mv, ref mi.Mv);
}
frameMvs = frameMvs.Slice(cm.MiCols);
}
}
}
}
}