0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2024-12-24 01:25:45 +00:00
ryujinx-fork/Ryujinx.Memory/Range/RangeList.cs
riperiperi a1f77a5b6a
Implement lazy flush-on-read for Buffers (SSBO/Copy) (#1790)
* Initial implementation of buffer flush (VERY WIP)

* Host shaders need to be rebuilt for the SSBO write flag.

* New approach with reserved regions and gl sync

* Fix a ton of buffer issues.

* Remove unused buffer unmapped behaviour

* Revert "Remove unused buffer unmapped behaviour"

This reverts commit f1700e52fb8760180ac5e0987a07d409d1e70ece.

* Delete modified ranges on unmap

Fixes potential crashes in Super Smash Bros, where a previously modified range could lie on either side of an unmap.

* Cache some more delegates.

* Dispose Sync on Close

* Also create host sync for GPFifo syncpoint increment.

* Copy buffer optimization, add docs

* Fix race condition with OpenGL Sync

* Enable read tracking on CommandBuffer, insert syncpoint on WaitForIdle

* Performance: Only flush individual pages of SSBO at a time

This avoids flushing large amounts of data when only a small amount is actually used.

* Signal Modified rather than flushing after clear

* Fix some docs and code style.

* Introduce a new test for tracking memory protection.

Sucessfully demonstrates that the bug causing write protection to be cleared by a read action has been fixed. (these tests fail on master)

* Address Comments

* Add host sync for SetReference

This ensures that any indirect draws will correctly flush any related buffer data written before them. Fixes some flashing and misplaced world geometry in MH rise.

* Make PageAlign static

* Re-enable read tracking, for reads.
2021-01-17 17:08:06 -03:00

342 lines
No EOL
11 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
namespace Ryujinx.Memory.Range
{
/// <summary>
/// Sorted list of ranges that supports binary search.
/// </summary>
/// <typeparam name="T">Type of the range.</typeparam>
public class RangeList<T> : IEnumerable<T> where T : IRange
{
private const int ArrayGrowthSize = 32;
protected readonly List<T> Items;
public int Count => Items.Count;
/// <summary>
/// Creates a new range list.
/// </summary>
public RangeList()
{
Items = new List<T>();
}
/// <summary>
/// Adds a new item to the list.
/// </summary>
/// <param name="item">The item to be added</param>
public void Add(T item)
{
int index = BinarySearch(item.Address);
if (index < 0)
{
index = ~index;
}
Items.Insert(index, item);
}
/// <summary>
/// Removes an item from the list.
/// </summary>
/// <param name="item">The item to be removed</param>
/// <returns>True if the item was removed, or false if it was not found</returns>
public bool Remove(T item)
{
int index = BinarySearch(item.Address);
if (index >= 0)
{
while (index > 0 && Items[index - 1].Address == item.Address)
{
index--;
}
while (index < Items.Count)
{
if (Items[index].Equals(item))
{
Items.RemoveAt(index);
return true;
}
if (Items[index].Address > item.Address)
{
break;
}
index++;
}
}
return false;
}
/// <summary>
/// Gets the first item on the list overlapping in memory with the specified item.
/// </summary>
/// <remarks>
/// Despite the name, this has no ordering guarantees of the returned item.
/// It only ensures that the item returned overlaps the specified item.
/// </remarks>
/// <param name="item">Item to check for overlaps</param>
/// <returns>The overlapping item, or the default value for the type if none found</returns>
public T FindFirstOverlap(T item)
{
return FindFirstOverlap(item.Address, item.Size);
}
/// <summary>
/// Gets the first item on the list overlapping the specified memory range.
/// </summary>
/// <remarks>
/// Despite the name, this has no ordering guarantees of the returned item.
/// It only ensures that the item returned overlaps the specified memory range.
/// </remarks>
/// <param name="address">Start address of the range</param>
/// <param name="size">Size in bytes of the range</param>
/// <returns>The overlapping item, or the default value for the type if none found</returns>
public T FindFirstOverlap(ulong address, ulong size)
{
int index = BinarySearch(address, size);
if (index < 0)
{
return default(T);
}
return Items[index];
}
/// <summary>
/// Gets all items overlapping with the specified item in memory.
/// </summary>
/// <param name="item">Item to check for overlaps</param>
/// <param name="output">Output array where matches will be written. It is automatically resized to fit the results</param>
/// <returns>The number of overlapping items found</returns>
public int FindOverlaps(T item, ref T[] output)
{
return FindOverlaps(item.Address, item.Size, ref output);
}
/// <summary>
/// Gets all items on the list overlapping the specified memory range.
/// </summary>
/// <param name="address">Start address of the range</param>
/// <param name="size">Size in bytes of the range</param>
/// <param name="output">Output array where matches will be written. It is automatically resized to fit the results</param>
/// <returns>The number of overlapping items found</returns>
public int FindOverlaps(ulong address, ulong size, ref T[] output)
{
int outputIndex = 0;
ulong endAddress = address + size;
foreach (T item in Items)
{
if (item.Address >= endAddress)
{
break;
}
if (item.OverlapsWith(address, size))
{
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = item;
}
}
return outputIndex;
}
/// <summary>
/// Gets all items overlapping with the specified item in memory.
/// </summary>
/// <remarks>
/// This method only returns correct results if none of the items on the list overlaps with
/// each other. If that is not the case, this method should not be used.
/// This method is faster than the regular method to find all overlaps.
/// </remarks>
/// <param name="item">Item to check for overlaps</param>
/// <param name="output">Output array where matches will be written. It is automatically resized to fit the results</param>
/// <returns>The number of overlapping items found</returns>
public int FindOverlapsNonOverlapping(T item, ref T[] output)
{
return FindOverlapsNonOverlapping(item.Address, item.Size, ref output);
}
/// <summary>
/// Gets all items on the list overlapping the specified memory range.
/// </summary>
/// <remarks>
/// This method only returns correct results if none of the items on the list overlaps with
/// each other. If that is not the case, this method should not be used.
/// This method is faster than the regular method to find all overlaps.
/// </remarks>
/// <param name="address">Start address of the range</param>
/// <param name="size">Size in bytes of the range</param>
/// <param name="output">Output array where matches will be written. It is automatically resized to fit the results</param>
/// <returns>The number of overlapping items found</returns>
public int FindOverlapsNonOverlapping(ulong address, ulong size, ref T[] output)
{
// This is a bit faster than FindOverlaps, but only works
// when none of the items on the list overlaps with each other.
int outputIndex = 0;
int index = BinarySearch(address, size);
if (index >= 0)
{
while (index > 0 && Items[index - 1].OverlapsWith(address, size))
{
index--;
}
do
{
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = Items[index++];
}
while (index < Items.Count && Items[index].OverlapsWith(address, size));
}
return outputIndex;
}
/// <summary>
/// Gets all items on the list with the specified memory address.
/// </summary>
/// <param name="address">Address to find</param>
/// <param name="output">Output array where matches will be written. It is automatically resized to fit the results</param>
/// <returns>The number of matches found</returns>
public int FindOverlaps(ulong address, ref T[] output)
{
int index = BinarySearch(address);
int outputIndex = 0;
if (index >= 0)
{
while (index > 0 && Items[index - 1].Address == address)
{
index--;
}
while (index < Items.Count)
{
T overlap = Items[index++];
if (overlap.Address != address)
{
break;
}
if (outputIndex == output.Length)
{
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
}
output[outputIndex++] = overlap;
}
}
return outputIndex;
}
/// <summary>
/// Performs binary search on the internal list of items.
/// </summary>
/// <param name="address">Address to find</param>
/// <returns>List index of the item, or complement index of nearest item with lower value on the list</returns>
private int BinarySearch(ulong address)
{
int left = 0;
int right = Items.Count - 1;
while (left <= right)
{
int range = right - left;
int middle = left + (range >> 1);
T item = Items[middle];
if (item.Address == address)
{
return middle;
}
if (address < item.Address)
{
right = middle - 1;
}
else
{
left = middle + 1;
}
}
return ~left;
}
/// <summary>
/// Performs binary search for items overlapping a given memory range.
/// </summary>
/// <param name="address">Start address of the range</param>
/// <param name="size">Size in bytes of the range</param>
/// <returns>List index of the item, or complement index of nearest item with lower value on the list</returns>
private int BinarySearch(ulong address, ulong size)
{
int left = 0;
int right = Items.Count - 1;
while (left <= right)
{
int range = right - left;
int middle = left + (range >> 1);
T item = Items[middle];
if (item.OverlapsWith(address, size))
{
return middle;
}
if (address < item.Address)
{
right = middle - 1;
}
else
{
left = middle + 1;
}
}
return ~left;
}
public IEnumerator<T> GetEnumerator()
{
return Items.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return Items.GetEnumerator();
}
}
}