0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2024-12-24 12:45:44 +00:00
ryujinx-fork/Ryujinx.HLE/HOS/Kernel/Threading/KSynchronization.cs
gdkchan 08831eecf7
IPC refactor part 3+4: New server HIPC message processor (#4188)
* IPC refactor part 3 + 4: New server HIPC message processor with source generator based serialization

* Make types match on calls to AlignUp/AlignDown

* Formatting

* Address some PR feedback

* Move BitfieldExtensions to Ryujinx.Common.Utilities and consolidate implementations

* Rename Reader/Writer to SpanReader/SpanWriter and move to Ryujinx.Common.Memory

* Implement EventType

* Address more PR feedback

* Log request processing errors since they are not normal

* Rename waitable to multiwait and add missing lock

* PR feedback

* Ac_K PR feedback
2023-01-04 23:15:45 +01:00

138 lines
No EOL
3.9 KiB
C#

using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.Horizon.Common;
using System;
using System.Collections.Generic;
namespace Ryujinx.HLE.HOS.Kernel.Threading
{
class KSynchronization
{
private KernelContext _context;
public KSynchronization(KernelContext context)
{
_context = context;
}
public Result WaitFor(Span<KSynchronizationObject> syncObjs, long timeout, out int handleIndex)
{
handleIndex = 0;
Result result = KernelResult.TimedOut;
_context.CriticalSection.Enter();
// Check if objects are already signaled before waiting.
for (int index = 0; index < syncObjs.Length; index++)
{
if (!syncObjs[index].IsSignaled())
{
continue;
}
handleIndex = index;
_context.CriticalSection.Leave();
return Result.Success;
}
if (timeout == 0)
{
_context.CriticalSection.Leave();
return result;
}
KThread currentThread = KernelStatic.GetCurrentThread();
if (currentThread.ShallBeTerminated ||
currentThread.SchedFlags == ThreadSchedState.TerminationPending)
{
result = KernelResult.ThreadTerminating;
}
else if (currentThread.SyncCancelled)
{
currentThread.SyncCancelled = false;
result = KernelResult.Cancelled;
}
else
{
LinkedListNode<KThread>[] syncNodes = new LinkedListNode<KThread>[syncObjs.Length];
for (int index = 0; index < syncObjs.Length; index++)
{
syncNodes[index] = syncObjs[index].AddWaitingThread(currentThread);
}
currentThread.WaitingSync = true;
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = result;
currentThread.Reschedule(ThreadSchedState.Paused);
if (timeout > 0)
{
_context.TimeManager.ScheduleFutureInvocation(currentThread, timeout);
}
_context.CriticalSection.Leave();
currentThread.WaitingSync = false;
if (timeout > 0)
{
_context.TimeManager.UnscheduleFutureInvocation(currentThread);
}
_context.CriticalSection.Enter();
result = currentThread.ObjSyncResult;
handleIndex = -1;
for (int index = 0; index < syncObjs.Length; index++)
{
syncObjs[index].RemoveWaitingThread(syncNodes[index]);
if (syncObjs[index] == currentThread.SignaledObj)
{
handleIndex = index;
}
}
}
_context.CriticalSection.Leave();
return result;
}
public void SignalObject(KSynchronizationObject syncObj)
{
_context.CriticalSection.Enter();
if (syncObj.IsSignaled())
{
LinkedListNode<KThread> node = syncObj.WaitingThreads.First;
while (node != null)
{
KThread thread = node.Value;
if ((thread.SchedFlags & ThreadSchedState.LowMask) == ThreadSchedState.Paused)
{
thread.SignaledObj = syncObj;
thread.ObjSyncResult = Result.Success;
thread.Reschedule(ThreadSchedState.Running);
}
node = node.Next;
}
}
_context.CriticalSection.Leave();
}
}
}