0
0
Fork 0
mirror of https://github.com/ryujinx-mirror/ryujinx.git synced 2025-01-05 16:21:57 +00:00
ryujinx-fork/Ryujinx.Tests/Cpu/CpuTestSimdTbl.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

316 lines
14 KiB
C#

#define SimdTbl
using ARMeilleure.State;
using NUnit.Framework;
using System.Collections.Generic;
namespace Ryujinx.Tests.Cpu
{
[Category("SimdTbl")]
public sealed class CpuTestSimdTbl : CpuTest
{
#if SimdTbl
#region "Helper methods"
private static ulong GenIdxsForTbls(int regs)
{
const byte idxInRngMin = (byte)0;
byte idxInRngMax = (byte)((16 * regs) - 1);
byte idxOutRngMin = (byte) (16 * regs);
const byte idxOutRngMax = (byte)255;
ulong idxs = 0ul;
for (int cnt = 1; cnt <= 8; cnt++)
{
ulong idxInRng = (ulong)TestContext.CurrentContext.Random.NextByte(idxInRngMin, idxInRngMax);
ulong idxOutRng = (ulong)TestContext.CurrentContext.Random.NextByte(idxOutRngMin, idxOutRngMax);
ulong idx = TestContext.CurrentContext.Random.NextBool() ? idxInRng : idxOutRng;
idxs = (idxs << 8) | idx;
}
return idxs;
}
#endregion
#region "ValueSource (Types)"
private static ulong[] _8B_()
{
return new ulong[] { 0x0000000000000000ul, 0x7F7F7F7F7F7F7F7Ful,
0x8080808080808080ul, 0xFFFFFFFFFFFFFFFFul };
}
private static IEnumerable<ulong> _GenIdxsForTbl1_()
{
yield return 0x0000000000000000ul;
yield return 0x7F7F7F7F7F7F7F7Ful;
yield return 0x8080808080808080ul;
yield return 0xFFFFFFFFFFFFFFFFul;
for (int cnt = 1; cnt <= RndCntIdxs; cnt++)
{
yield return GenIdxsForTbls(regs: 1);
}
}
private static IEnumerable<ulong> _GenIdxsForTbl2_()
{
yield return 0x0000000000000000ul;
yield return 0x7F7F7F7F7F7F7F7Ful;
yield return 0x8080808080808080ul;
yield return 0xFFFFFFFFFFFFFFFFul;
for (int cnt = 1; cnt <= RndCntIdxs; cnt++)
{
yield return GenIdxsForTbls(regs: 2);
}
}
private static IEnumerable<ulong> _GenIdxsForTbl3_()
{
yield return 0x0000000000000000ul;
yield return 0x7F7F7F7F7F7F7F7Ful;
yield return 0x8080808080808080ul;
yield return 0xFFFFFFFFFFFFFFFFul;
for (int cnt = 1; cnt <= RndCntIdxs; cnt++)
{
yield return GenIdxsForTbls(regs: 3);
}
}
private static IEnumerable<ulong> _GenIdxsForTbl4_()
{
yield return 0x0000000000000000ul;
yield return 0x7F7F7F7F7F7F7F7Ful;
yield return 0x8080808080808080ul;
yield return 0xFFFFFFFFFFFFFFFFul;
for (int cnt = 1; cnt <= RndCntIdxs; cnt++)
{
yield return GenIdxsForTbls(regs: 4);
}
}
#endregion
#region "ValueSource (Opcodes)"
private static uint[] _SingleRegTbl_V_8B_16B_()
{
return new uint[]
{
0x0E000000u, // TBL V0.8B, { V0.16B }, V0.8B
};
}
private static uint[] _TwoRegTbl_V_8B_16B_()
{
return new uint[]
{
0x0E002000u, // TBL V0.8B, { V0.16B, V1.16B }, V0.8B
};
}
private static uint[] _ThreeRegTbl_V_8B_16B_()
{
return new uint[]
{
0x0E004000u, // TBL V0.8B, { V0.16B, V1.16B, V2.16B }, V0.8B
};
}
private static uint[] _FourRegTbl_V_8B_16B_()
{
return new uint[]
{
0x0E006000u, // TBL V0.8B, { V0.16B, V1.16B, V2.16B, V3.16B }, V0.8B
};
}
#endregion
private const int RndCntTbls = 2;
private const int RndCntIdxs = 2;
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>")]
public void SingleRegTbl_V_8B_16B([ValueSource("_SingleRegTbl_V_8B_16B_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u)] uint rn,
[Values(2u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_GenIdxsForTbl1_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(table0, table0);
V128 v2 = MakeVectorE0E1(indexes, q == 1u ? indexes : 0ul);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>")]
public void TwoRegTbl_V_8B_16B([ValueSource("_TwoRegTbl_V_8B_16B_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u)] uint rn,
[Values(3u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table1,
[ValueSource("_GenIdxsForTbl2_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(table0, table0);
V128 v2 = MakeVectorE0E1(table1, table1);
V128 v3 = MakeVectorE0E1(indexes, q == 1u ? indexes : 0ul);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, v3: v3);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>")]
public void Mod_TwoRegTbl_V_8B_16B([ValueSource("_TwoRegTbl_V_8B_16B_")] uint opcodes,
[Values(30u, 1u)] uint rd,
[Values(31u)] uint rn,
[Values(1u, 30u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table1,
[ValueSource("_GenIdxsForTbl2_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v30 = MakeVectorE0E1(z, z);
V128 v31 = MakeVectorE0E1(table0, table0);
V128 v0 = MakeVectorE0E1(table1, table1);
V128 v1 = MakeVectorE0E1(indexes, indexes);
SingleOpcode(opcodes, v0: v0, v1: v1, v30: v30, v31: v31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>")]
public void ThreeRegTbl_V_8B_16B([ValueSource("_ThreeRegTbl_V_8B_16B_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u)] uint rn,
[Values(4u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table1,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table2,
[ValueSource("_GenIdxsForTbl3_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(table0, table0);
V128 v2 = MakeVectorE0E1(table1, table1);
V128 v3 = MakeVectorE0E1(table2, table2);
V128 v4 = MakeVectorE0E1(indexes, q == 1u ? indexes : 0ul);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, v3: v3, v4: v4);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>")]
public void Mod_ThreeRegTbl_V_8B_16B([ValueSource("_ThreeRegTbl_V_8B_16B_")] uint opcodes,
[Values(30u, 2u)] uint rd,
[Values(31u)] uint rn,
[Values(2u, 30u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table1,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table2,
[ValueSource("_GenIdxsForTbl3_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v30 = MakeVectorE0E1(z, z);
V128 v31 = MakeVectorE0E1(table0, table0);
V128 v0 = MakeVectorE0E1(table1, table1);
V128 v1 = MakeVectorE0E1(table2, table2);
V128 v2 = MakeVectorE0E1(indexes, indexes);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, v30: v30, v31: v31);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>")]
public void FourRegTbl_V_8B_16B([ValueSource("_FourRegTbl_V_8B_16B_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u)] uint rn,
[Values(5u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table1,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table2,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table3,
[ValueSource("_GenIdxsForTbl4_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(table0, table0);
V128 v2 = MakeVectorE0E1(table1, table1);
V128 v3 = MakeVectorE0E1(table2, table2);
V128 v4 = MakeVectorE0E1(table3, table3);
V128 v5 = MakeVectorE0E1(indexes, q == 1u ? indexes : 0ul);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, v3: v3, v4: v4, v5: v5);
CompareAgainstUnicorn();
}
[Test, Pairwise, Description("TBL <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>")]
public void Mod_FourRegTbl_V_8B_16B([ValueSource("_FourRegTbl_V_8B_16B_")] uint opcodes,
[Values(30u, 3u)] uint rd,
[Values(31u)] uint rn,
[Values(3u, 30u)] uint rm,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table0,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table1,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table2,
[ValueSource("_8B_")] [Random(RndCntTbls)] ulong table3,
[ValueSource("_GenIdxsForTbl4_")] ulong indexes,
[Values(0b0u, 0b1u)] uint q) // <8B, 16B>
{
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= ((q & 1) << 30);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v30 = MakeVectorE0E1(z, z);
V128 v31 = MakeVectorE0E1(table0, table0);
V128 v0 = MakeVectorE0E1(table1, table1);
V128 v1 = MakeVectorE0E1(table2, table2);
V128 v2 = MakeVectorE0E1(table3, table3);
V128 v3 = MakeVectorE0E1(indexes, indexes);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, v3: v3, v30: v30, v31: v31);
CompareAgainstUnicorn();
}
#endif
}
}