0
0
Fork 0
mirror of https://github.com/GreemDev/Ryujinx.git synced 2025-01-15 18:21:59 +00:00
Ryujinx/Ryujinx.Graphics.Vulkan/Effects/Shaders/FsrSharpening.glsl
Emmanuel Hansen 80b4972139
Add Support for Post Processing Effects (#3616)
* Add Post Processing Effects

* fix events and shader issues

* fix gtk upscale slider value

* fix bgra games

* don't swap swizzle if already swapped

* restore opengl texture state after effects run

* addressed review

* use single pipeline for smaa and fsr

* call finish on all pipelines

* addressed review

* attempt fix file case

* attempt fixing file case

* fix filter level tick frequency

* adjust filter slider margins

* replace fxaa shaders with original shader

* addressed review
2023-02-27 18:11:55 -03:00

3904 lines
No EOL
238 KiB
GLSL

// Sharpening
#version 430 core
layout (local_size_x = 64) in;
layout( rgba8, binding = 0, set = 3) uniform image2D imgOutput;
layout( binding = 2 ) uniform invResolution
{
vec2 invResolution_data;
};
layout( binding = 3 ) uniform outvResolution
{
vec2 outvResolution_data;
};
layout( binding = 1, set = 2) uniform sampler2D source;
layout( binding = 4 ) uniform sharpening
{
float sharpening_data;
};
#define A_GPU 1
#define A_GLSL 1
//==============================================================================================================================
//
// [A] SHADER PORTABILITY 1.20210629
//
//==============================================================================================================================
// FidelityFX Super Resolution Sample
//
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//------------------------------------------------------------------------------------------------------------------------------
// MIT LICENSE
// ===========
// Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS").
// -----------
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
// modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// -----------
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// -----------
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//------------------------------------------------------------------------------------------------------------------------------
// ABOUT
// =====
// Common central point for high-level shading language and C portability for various shader headers.
//------------------------------------------------------------------------------------------------------------------------------
// DEFINES
// =======
// A_CPU ..... Include the CPU related code.
// A_GPU ..... Include the GPU related code.
// A_GLSL .... Using GLSL.
// A_HLSL .... Using HLSL.
// A_HLSL_6_2 Using HLSL 6.2 with new 'uint16_t' and related types (requires '-enable-16bit-types').
// A_NO_16_BIT_CAST Don't use instructions that are not availabe in SPIR-V (needed for running A_HLSL_6_2 on Vulkan)
// A_GCC ..... Using a GCC compatible compiler (else assume MSVC compatible compiler by default).
// =======
// A_BYTE .... Support 8-bit integer.
// A_HALF .... Support 16-bit integer and floating point.
// A_LONG .... Support 64-bit integer.
// A_DUBL .... Support 64-bit floating point.
// =======
// A_WAVE .... Support wave-wide operations.
//------------------------------------------------------------------------------------------------------------------------------
// To get #include "ffx_a.h" working in GLSL use '#extension GL_GOOGLE_include_directive:require'.
//------------------------------------------------------------------------------------------------------------------------------
// SIMPLIFIED TYPE SYSTEM
// ======================
// - All ints will be unsigned with exception of when signed is required.
// - Type naming simplified and shortened "A<type><#components>",
// - H = 16-bit float (half)
// - F = 32-bit float (float)
// - D = 64-bit float (double)
// - P = 1-bit integer (predicate, not using bool because 'B' is used for byte)
// - B = 8-bit integer (byte)
// - W = 16-bit integer (word)
// - U = 32-bit integer (unsigned)
// - L = 64-bit integer (long)
// - Using "AS<type><#components>" for signed when required.
//------------------------------------------------------------------------------------------------------------------------------
// TODO
// ====
// - Make sure 'ALerp*(a,b,m)' does 'b*m+(-a*m+a)' (2 ops).
//------------------------------------------------------------------------------------------------------------------------------
// CHANGE LOG
// ==========
// 20200914 - Expanded wave ops and prx code.
// 20200713 - Added [ZOL] section, fixed serious bugs in sRGB and Rec.709 color conversion code, etc.
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// COMMON
//==============================================================================================================================
#define A_2PI 6.28318530718
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
// CPU
//
//
//==============================================================================================================================
#ifdef A_CPU
// Supporting user defined overrides.
#ifndef A_RESTRICT
#define A_RESTRICT __restrict
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifndef A_STATIC
#define A_STATIC static
#endif
//------------------------------------------------------------------------------------------------------------------------------
// Same types across CPU and GPU.
// Predicate uses 32-bit integer (C friendly bool).
typedef uint32_t AP1;
typedef float AF1;
typedef double AD1;
typedef uint8_t AB1;
typedef uint16_t AW1;
typedef uint32_t AU1;
typedef uint64_t AL1;
typedef int8_t ASB1;
typedef int16_t ASW1;
typedef int32_t ASU1;
typedef int64_t ASL1;
//------------------------------------------------------------------------------------------------------------------------------
#define AD1_(a) ((AD1)(a))
#define AF1_(a) ((AF1)(a))
#define AL1_(a) ((AL1)(a))
#define AU1_(a) ((AU1)(a))
//------------------------------------------------------------------------------------------------------------------------------
#define ASL1_(a) ((ASL1)(a))
#define ASU1_(a) ((ASU1)(a))
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;}
//------------------------------------------------------------------------------------------------------------------------------
#define A_TRUE 1
#define A_FALSE 0
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// CPU/GPU PORTING
//
//------------------------------------------------------------------------------------------------------------------------------
// Get CPU and GPU to share all setup code, without duplicate code paths.
// This uses a lower-case prefix for special vector constructs.
// - In C restrict pointers are used.
// - In the shading language, in/inout/out arguments are used.
// This depends on the ability to access a vector value in both languages via array syntax (aka color[2]).
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
//==============================================================================================================================
#define retAD2 AD1 *A_RESTRICT
#define retAD3 AD1 *A_RESTRICT
#define retAD4 AD1 *A_RESTRICT
#define retAF2 AF1 *A_RESTRICT
#define retAF3 AF1 *A_RESTRICT
#define retAF4 AF1 *A_RESTRICT
#define retAL2 AL1 *A_RESTRICT
#define retAL3 AL1 *A_RESTRICT
#define retAL4 AL1 *A_RESTRICT
#define retAU2 AU1 *A_RESTRICT
#define retAU3 AU1 *A_RESTRICT
#define retAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
#define inAD2 AD1 *A_RESTRICT
#define inAD3 AD1 *A_RESTRICT
#define inAD4 AD1 *A_RESTRICT
#define inAF2 AF1 *A_RESTRICT
#define inAF3 AF1 *A_RESTRICT
#define inAF4 AF1 *A_RESTRICT
#define inAL2 AL1 *A_RESTRICT
#define inAL3 AL1 *A_RESTRICT
#define inAL4 AL1 *A_RESTRICT
#define inAU2 AU1 *A_RESTRICT
#define inAU3 AU1 *A_RESTRICT
#define inAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
#define inoutAD2 AD1 *A_RESTRICT
#define inoutAD3 AD1 *A_RESTRICT
#define inoutAD4 AD1 *A_RESTRICT
#define inoutAF2 AF1 *A_RESTRICT
#define inoutAF3 AF1 *A_RESTRICT
#define inoutAF4 AF1 *A_RESTRICT
#define inoutAL2 AL1 *A_RESTRICT
#define inoutAL3 AL1 *A_RESTRICT
#define inoutAL4 AL1 *A_RESTRICT
#define inoutAU2 AU1 *A_RESTRICT
#define inoutAU3 AU1 *A_RESTRICT
#define inoutAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
#define outAD2 AD1 *A_RESTRICT
#define outAD3 AD1 *A_RESTRICT
#define outAD4 AD1 *A_RESTRICT
#define outAF2 AF1 *A_RESTRICT
#define outAF3 AF1 *A_RESTRICT
#define outAF4 AF1 *A_RESTRICT
#define outAL2 AL1 *A_RESTRICT
#define outAL3 AL1 *A_RESTRICT
#define outAL4 AL1 *A_RESTRICT
#define outAU2 AU1 *A_RESTRICT
#define outAU3 AU1 *A_RESTRICT
#define outAU4 AU1 *A_RESTRICT
//------------------------------------------------------------------------------------------------------------------------------
#define varAD2(x) AD1 x[2]
#define varAD3(x) AD1 x[3]
#define varAD4(x) AD1 x[4]
#define varAF2(x) AF1 x[2]
#define varAF3(x) AF1 x[3]
#define varAF4(x) AF1 x[4]
#define varAL2(x) AL1 x[2]
#define varAL3(x) AL1 x[3]
#define varAL4(x) AL1 x[4]
#define varAU2(x) AU1 x[2]
#define varAU3(x) AU1 x[3]
#define varAU4(x) AU1 x[4]
//------------------------------------------------------------------------------------------------------------------------------
#define initAD2(x,y) {x,y}
#define initAD3(x,y,z) {x,y,z}
#define initAD4(x,y,z,w) {x,y,z,w}
#define initAF2(x,y) {x,y}
#define initAF3(x,y,z) {x,y,z}
#define initAF4(x,y,z,w) {x,y,z,w}
#define initAL2(x,y) {x,y}
#define initAL3(x,y,z) {x,y,z}
#define initAL4(x,y,z,w) {x,y,z,w}
#define initAU2(x,y) {x,y}
#define initAU3(x,y,z) {x,y,z}
#define initAU4(x,y,z,w) {x,y,z,w}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// SCALAR RETURN OPS
//------------------------------------------------------------------------------------------------------------------------------
// TODO
// ====
// - Replace transcendentals with manual versions.
//==============================================================================================================================
#ifdef A_GCC
A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);}
A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);}
A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));}
A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));}
#else
A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);}
A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);}
A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));}
A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));}
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_GCC
A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);}
A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);}
#else
A_STATIC AD1 ACosD1(AD1 a){return cos(a);}
A_STATIC AF1 ACosF1(AF1 a){return cosf(a);}
#endif
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];}
A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];}
A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];}
A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];}
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_GCC
A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);}
A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);}
#else
A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);}
A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);}
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_GCC
A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);}
A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);}
#else
A_STATIC AD1 AFloorD1(AD1 a){return floor(a);}
A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);}
#endif
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);}
A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);}
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_GCC
A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);}
A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);}
#else
A_STATIC AD1 ALog2D1(AD1 a){return log2(a);}
A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);}
#endif
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;}
A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;}
A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;}
A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
// These follow the convention that A integer types don't have signage, until they are operated on.
A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;}
A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a<b?a:b;}
A_STATIC AF1 AMinF1(AF1 a,AF1 b){return a<b?a:b;}
A_STATIC AL1 AMinL1(AL1 a,AL1 b){return a<b?a:b;}
A_STATIC AU1 AMinU1(AU1 a,AU1 b){return a<b?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AL1 AMinSL1(AL1 a,AL1 b){return (ASL1_(a)<ASL1_(b))?a:b;}
A_STATIC AU1 AMinSU1(AU1 a,AU1 b){return (ASU1_(a)<ASU1_(b))?a:b;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 ARcpD1(AD1 a){return 1.0/a;}
A_STATIC AF1 ARcpF1(AF1 a){return 1.0f/a;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AL1 AShrSL1(AL1 a,AL1 b){return AL1_(ASL1_(a)>>ASL1_(b));}
A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));}
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_GCC
A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);}
A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);}
#else
A_STATIC AD1 ASinD1(AD1 a){return sin(a);}
A_STATIC AF1 ASinF1(AF1 a){return sinf(a);}
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_GCC
A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);}
A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);}
#else
A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);}
A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// SCALAR RETURN OPS - DEPENDENT
//==============================================================================================================================
A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));}
A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);}
A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));}
A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));}
A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));}
A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// VECTOR OPS
//------------------------------------------------------------------------------------------------------------------------------
// These are added as needed for production or prototyping, so not necessarily a complete set.
// They follow a convention of taking in a destination and also returning the destination value to increase utility.
//==============================================================================================================================
A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;}
A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;}
A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;}
A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;}
A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;}
//==============================================================================================================================
A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;}
A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;}
A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;}
//==============================================================================================================================
A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;}
A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;}
A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;}
//==============================================================================================================================
A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;}
A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;}
A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;}
A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;}
//==============================================================================================================================
A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;}
A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;}
A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;}
A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;}
A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;}
//==============================================================================================================================
A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;}
A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;}
A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;}
A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;}
A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;}
//==============================================================================================================================
A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;}
A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;}
A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;}
A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;}
A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;}
//==============================================================================================================================
A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;}
A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;}
A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;}
A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;}
A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;}
//==============================================================================================================================
A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;}
A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;}
A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;}
//==============================================================================================================================
A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;}
A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;}
A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;}
//==============================================================================================================================
A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;}
A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;}
A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;}
A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;}
//==============================================================================================================================
A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;}
A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;}
A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;}
//------------------------------------------------------------------------------------------------------------------------------
A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;}
A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;}
A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// HALF FLOAT PACKING
//==============================================================================================================================
// Convert float to half (in lower 16-bits of output).
// Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
// Supports denormals.
// Conversion rules are to make computations possibly "safer" on the GPU,
// -INF & -NaN -> -65504
// +INF & +NaN -> +65504
A_STATIC AU1 AU1_AH1_AF1(AF1 f){
static AW1 base[512]={
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100,
0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00,
0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,
0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100,
0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00,
0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,
0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff};
static AB1 shift[512]={
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f,
0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,
0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,
0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18};
union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);}
//------------------------------------------------------------------------------------------------------------------------------
// Used to output packed constant.
A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
// GLSL
//
//
//==============================================================================================================================
#if defined(A_GLSL) && defined(A_GPU)
#ifndef A_SKIP_EXT
#ifdef A_HALF
#extension GL_EXT_shader_16bit_storage:require
#extension GL_EXT_shader_explicit_arithmetic_types:require
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_LONG
#extension GL_ARB_gpu_shader_int64:require
#extension GL_NV_shader_atomic_int64:require
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_WAVE
#extension GL_KHR_shader_subgroup_arithmetic:require
#extension GL_KHR_shader_subgroup_ballot:require
#extension GL_KHR_shader_subgroup_quad:require
#extension GL_KHR_shader_subgroup_shuffle:require
#endif
#endif
//==============================================================================================================================
#define AP1 bool
#define AP2 bvec2
#define AP3 bvec3
#define AP4 bvec4
//------------------------------------------------------------------------------------------------------------------------------
#define AF1 float
#define AF2 vec2
#define AF3 vec3
#define AF4 vec4
//------------------------------------------------------------------------------------------------------------------------------
#define AU1 uint
#define AU2 uvec2
#define AU3 uvec3
#define AU4 uvec4
//------------------------------------------------------------------------------------------------------------------------------
#define ASU1 int
#define ASU2 ivec2
#define ASU3 ivec3
#define ASU4 ivec4
//==============================================================================================================================
#define AF1_AU1(x) uintBitsToFloat(AU1(x))
#define AF2_AU2(x) uintBitsToFloat(AU2(x))
#define AF3_AU3(x) uintBitsToFloat(AU3(x))
#define AF4_AU4(x) uintBitsToFloat(AU4(x))
//------------------------------------------------------------------------------------------------------------------------------
#define AU1_AF1(x) floatBitsToUint(AF1(x))
#define AU2_AF2(x) floatBitsToUint(AF2(x))
#define AU3_AF3(x) floatBitsToUint(AF3(x))
#define AU4_AF4(x) floatBitsToUint(AF4(x))
//------------------------------------------------------------------------------------------------------------------------------
AU1 AU1_AH1_AF1_x(AF1 a){return packHalf2x16(AF2(a,0.0));}
#define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define AU1_AH2_AF2 packHalf2x16
#define AU1_AW2Unorm_AF2 packUnorm2x16
#define AU1_AB4Unorm_AF4 packUnorm4x8
//------------------------------------------------------------------------------------------------------------------------------
#define AF2_AH2_AU1 unpackHalf2x16
#define AF2_AW2Unorm_AU1 unpackUnorm2x16
#define AF4_AB4Unorm_AU1 unpackUnorm4x8
//==============================================================================================================================
AF1 AF1_x(AF1 a){return AF1(a);}
AF2 AF2_x(AF1 a){return AF2(a,a);}
AF3 AF3_x(AF1 a){return AF3(a,a,a);}
AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
#define AF1_(a) AF1_x(AF1(a))
#define AF2_(a) AF2_x(AF1(a))
#define AF3_(a) AF3_x(AF1(a))
#define AF4_(a) AF4_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
AU1 AU1_x(AU1 a){return AU1(a);}
AU2 AU2_x(AU1 a){return AU2(a,a);}
AU3 AU3_x(AU1 a){return AU3(a,a,a);}
AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
#define AU1_(a) AU1_x(AU1(a))
#define AU2_(a) AU2_x(AU1(a))
#define AU3_(a) AU3_x(AU1(a))
#define AU4_(a) AU4_x(AU1(a))
//==============================================================================================================================
AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));}
AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
// Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<<bits)-1', and 'bits' needs to be an immediate.
AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){return bitfieldInsert(src,ins,0,ASU1(bits));}
//------------------------------------------------------------------------------------------------------------------------------
// V_MED3_F32.
AF1 AClampF1(AF1 x,AF1 n,AF1 m){return clamp(x,n,m);}
AF2 AClampF2(AF2 x,AF2 n,AF2 m){return clamp(x,n,m);}
AF3 AClampF3(AF3 x,AF3 n,AF3 m){return clamp(x,n,m);}
AF4 AClampF4(AF4 x,AF4 n,AF4 m){return clamp(x,n,m);}
//------------------------------------------------------------------------------------------------------------------------------
// V_FRACT_F32 (note DX frac() is different).
AF1 AFractF1(AF1 x){return fract(x);}
AF2 AFractF2(AF2 x){return fract(x);}
AF3 AFractF3(AF3 x){return fract(x);}
AF4 AFractF4(AF4 x){return fract(x);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return mix(x,y,a);}
AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return mix(x,y,a);}
AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return mix(x,y,a);}
AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return mix(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
// V_MAX3_F32.
AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
// Clamp has an easier pattern match for med3 when some ordering is known.
// V_MED3_F32.
AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
//------------------------------------------------------------------------------------------------------------------------------
// V_MIN3_F32.
AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
// Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
// V_COS_F32.
AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
// Normalized trig. Valid input domain is {-256 to +256}. No GLSL compiler intrinsic exists to map to this currently.
// V_SIN_F32.
AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ARcpF1(AF1 x){return AF1_(1.0)/x;}
AF2 ARcpF2(AF2 x){return AF2_(1.0)/x;}
AF3 ARcpF3(AF3 x){return AF3_(1.0)/x;}
AF4 ARcpF4(AF4 x){return AF4_(1.0)/x;}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ARsqF1(AF1 x){return AF1_(1.0)/sqrt(x);}
AF2 ARsqF2(AF2 x){return AF2_(1.0)/sqrt(x);}
AF3 ARsqF3(AF3 x){return AF3_(1.0)/sqrt(x);}
AF4 ARsqF4(AF4 x){return AF4_(1.0)/sqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ASatF1(AF1 x){return clamp(x,AF1_(0.0),AF1_(1.0));}
AF2 ASatF2(AF2 x){return clamp(x,AF2_(0.0),AF2_(1.0));}
AF3 ASatF3(AF3 x){return clamp(x,AF3_(0.0),AF3_(1.0));}
AF4 ASatF4(AF4 x){return clamp(x,AF4_(0.0),AF4_(1.0));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// GLSL BYTE
//==============================================================================================================================
#ifdef A_BYTE
#define AB1 uint8_t
#define AB2 u8vec2
#define AB3 u8vec3
#define AB4 u8vec4
//------------------------------------------------------------------------------------------------------------------------------
#define ASB1 int8_t
#define ASB2 i8vec2
#define ASB3 i8vec3
#define ASB4 i8vec4
//------------------------------------------------------------------------------------------------------------------------------
AB1 AB1_x(AB1 a){return AB1(a);}
AB2 AB2_x(AB1 a){return AB2(a,a);}
AB3 AB3_x(AB1 a){return AB3(a,a,a);}
AB4 AB4_x(AB1 a){return AB4(a,a,a,a);}
#define AB1_(a) AB1_x(AB1(a))
#define AB2_(a) AB2_x(AB1(a))
#define AB3_(a) AB3_x(AB1(a))
#define AB4_(a) AB4_x(AB1(a))
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// GLSL HALF
//==============================================================================================================================
#ifdef A_HALF
#define AH1 float16_t
#define AH2 f16vec2
#define AH3 f16vec3
#define AH4 f16vec4
//------------------------------------------------------------------------------------------------------------------------------
#define AW1 uint16_t
#define AW2 u16vec2
#define AW3 u16vec3
#define AW4 u16vec4
//------------------------------------------------------------------------------------------------------------------------------
#define ASW1 int16_t
#define ASW2 i16vec2
#define ASW3 i16vec3
#define ASW4 i16vec4
//==============================================================================================================================
#define AH2_AU1(x) unpackFloat2x16(AU1(x))
AH4 AH4_AU2_x(AU2 x){return AH4(unpackFloat2x16(x.x),unpackFloat2x16(x.y));}
#define AH4_AU2(x) AH4_AU2_x(AU2(x))
#define AW2_AU1(x) unpackUint2x16(AU1(x))
#define AW4_AU2(x) unpackUint4x16(pack64(AU2(x)))
//------------------------------------------------------------------------------------------------------------------------------
#define AU1_AH2(x) packFloat2x16(AH2(x))
AU2 AU2_AH4_x(AH4 x){return AU2(packFloat2x16(x.xy),packFloat2x16(x.zw));}
#define AU2_AH4(x) AU2_AH4_x(AH4(x))
#define AU1_AW2(x) packUint2x16(AW2(x))
#define AU2_AW4(x) unpack32(packUint4x16(AW4(x)))
//==============================================================================================================================
#define AW1_AH1(x) halfBitsToUint16(AH1(x))
#define AW2_AH2(x) halfBitsToUint16(AH2(x))
#define AW3_AH3(x) halfBitsToUint16(AH3(x))
#define AW4_AH4(x) halfBitsToUint16(AH4(x))
//------------------------------------------------------------------------------------------------------------------------------
#define AH1_AW1(x) uint16BitsToHalf(AW1(x))
#define AH2_AW2(x) uint16BitsToHalf(AW2(x))
#define AH3_AW3(x) uint16BitsToHalf(AW3(x))
#define AH4_AW4(x) uint16BitsToHalf(AW4(x))
//==============================================================================================================================
AH1 AH1_x(AH1 a){return AH1(a);}
AH2 AH2_x(AH1 a){return AH2(a,a);}
AH3 AH3_x(AH1 a){return AH3(a,a,a);}
AH4 AH4_x(AH1 a){return AH4(a,a,a,a);}
#define AH1_(a) AH1_x(AH1(a))
#define AH2_(a) AH2_x(AH1(a))
#define AH3_(a) AH3_x(AH1(a))
#define AH4_(a) AH4_x(AH1(a))
//------------------------------------------------------------------------------------------------------------------------------
AW1 AW1_x(AW1 a){return AW1(a);}
AW2 AW2_x(AW1 a){return AW2(a,a);}
AW3 AW3_x(AW1 a){return AW3(a,a,a);}
AW4 AW4_x(AW1 a){return AW4(a,a,a,a);}
#define AW1_(a) AW1_x(AW1(a))
#define AW2_(a) AW2_x(AW1(a))
#define AW3_(a) AW3_x(AW1(a))
#define AW4_(a) AW4_x(AW1(a))
//==============================================================================================================================
AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));}
AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));}
AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));}
AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AClampH1(AH1 x,AH1 n,AH1 m){return clamp(x,n,m);}
AH2 AClampH2(AH2 x,AH2 n,AH2 m){return clamp(x,n,m);}
AH3 AClampH3(AH3 x,AH3 n,AH3 m){return clamp(x,n,m);}
AH4 AClampH4(AH4 x,AH4 n,AH4 m){return clamp(x,n,m);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AFractH1(AH1 x){return fract(x);}
AH2 AFractH2(AH2 x){return fract(x);}
AH3 AFractH3(AH3 x){return fract(x);}
AH4 AFractH4(AH4 x){return fract(x);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return mix(x,y,a);}
AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return mix(x,y,a);}
AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return mix(x,y,a);}
AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return mix(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
// No packed version of max3.
AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));}
AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));}
AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));}
AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));}
AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));}
AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));}
AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
// No packed version of min3.
AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));}
AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));}
AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));}
AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));}
AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));}
AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));}
AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ARcpH1(AH1 x){return AH1_(1.0)/x;}
AH2 ARcpH2(AH2 x){return AH2_(1.0)/x;}
AH3 ARcpH3(AH3 x){return AH3_(1.0)/x;}
AH4 ARcpH4(AH4 x){return AH4_(1.0)/x;}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ARsqH1(AH1 x){return AH1_(1.0)/sqrt(x);}
AH2 ARsqH2(AH2 x){return AH2_(1.0)/sqrt(x);}
AH3 ARsqH3(AH3 x){return AH3_(1.0)/sqrt(x);}
AH4 ARsqH4(AH4 x){return AH4_(1.0)/sqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ASatH1(AH1 x){return clamp(x,AH1_(0.0),AH1_(1.0));}
AH2 ASatH2(AH2 x){return clamp(x,AH2_(0.0),AH2_(1.0));}
AH3 ASatH3(AH3 x){return clamp(x,AH3_(0.0),AH3_(1.0));}
AH4 ASatH4(AH4 x){return clamp(x,AH4_(0.0),AH4_(1.0));}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));}
AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));}
AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));}
AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// GLSL DOUBLE
//==============================================================================================================================
#ifdef A_DUBL
#define AD1 double
#define AD2 dvec2
#define AD3 dvec3
#define AD4 dvec4
//------------------------------------------------------------------------------------------------------------------------------
AD1 AD1_x(AD1 a){return AD1(a);}
AD2 AD2_x(AD1 a){return AD2(a,a);}
AD3 AD3_x(AD1 a){return AD3(a,a,a);}
AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
#define AD1_(a) AD1_x(AD1(a))
#define AD2_(a) AD2_x(AD1(a))
#define AD3_(a) AD3_x(AD1(a))
#define AD4_(a) AD4_x(AD1(a))
//==============================================================================================================================
AD1 AFractD1(AD1 x){return fract(x);}
AD2 AFractD2(AD2 x){return fract(x);}
AD3 AFractD3(AD3 x){return fract(x);}
AD4 AFractD4(AD4 x){return fract(x);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);}
AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);}
AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);}
AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;}
AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;}
AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;}
AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);}
AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);}
AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);}
AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));}
AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));}
AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));}
AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// GLSL LONG
//==============================================================================================================================
#ifdef A_LONG
#define AL1 uint64_t
#define AL2 u64vec2
#define AL3 u64vec3
#define AL4 u64vec4
//------------------------------------------------------------------------------------------------------------------------------
#define ASL1 int64_t
#define ASL2 i64vec2
#define ASL3 i64vec3
#define ASL4 i64vec4
//------------------------------------------------------------------------------------------------------------------------------
#define AL1_AU2(x) packUint2x32(AU2(x))
#define AU2_AL1(x) unpackUint2x32(AL1(x))
//------------------------------------------------------------------------------------------------------------------------------
AL1 AL1_x(AL1 a){return AL1(a);}
AL2 AL2_x(AL1 a){return AL2(a,a);}
AL3 AL3_x(AL1 a){return AL3(a,a,a);}
AL4 AL4_x(AL1 a){return AL4(a,a,a,a);}
#define AL1_(a) AL1_x(AL1(a))
#define AL2_(a) AL2_x(AL1(a))
#define AL3_(a) AL3_x(AL1(a))
#define AL4_(a) AL4_x(AL1(a))
//==============================================================================================================================
AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));}
AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));}
AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));}
AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));}
AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));}
AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));}
AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));}
AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));}
AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));}
AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// WAVE OPERATIONS
//==============================================================================================================================
#ifdef A_WAVE
// Where 'x' must be a compile time literal.
AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);}
AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);}
AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);}
AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);}
AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);}
AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);}
AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);}
AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);}
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_HALF
AH2 AWaveXorH2(AH2 v,AU1 x){return AH2_AU1(subgroupShuffleXor(AU1_AH2(v),x));}
AH4 AWaveXorH4(AH4 v,AU1 x){return AH4_AU2(subgroupShuffleXor(AU2_AH4(v),x));}
AW2 AWaveXorW2(AW2 v,AU1 x){return AW2_AU1(subgroupShuffleXor(AU1_AW2(v),x));}
AW4 AWaveXorW4(AW4 v,AU1 x){return AW4_AU2(subgroupShuffleXor(AU2_AW4(v),x));}
#endif
#endif
//==============================================================================================================================
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
// HLSL
//
//
//==============================================================================================================================
#if defined(A_HLSL) && defined(A_GPU)
#ifdef A_HLSL_6_2
#define AP1 bool
#define AP2 bool2
#define AP3 bool3
#define AP4 bool4
//------------------------------------------------------------------------------------------------------------------------------
#define AF1 float32_t
#define AF2 float32_t2
#define AF3 float32_t3
#define AF4 float32_t4
//------------------------------------------------------------------------------------------------------------------------------
#define AU1 uint32_t
#define AU2 uint32_t2
#define AU3 uint32_t3
#define AU4 uint32_t4
//------------------------------------------------------------------------------------------------------------------------------
#define ASU1 int32_t
#define ASU2 int32_t2
#define ASU3 int32_t3
#define ASU4 int32_t4
#else
#define AP1 bool
#define AP2 bool2
#define AP3 bool3
#define AP4 bool4
//------------------------------------------------------------------------------------------------------------------------------
#define AF1 float
#define AF2 float2
#define AF3 float3
#define AF4 float4
//------------------------------------------------------------------------------------------------------------------------------
#define AU1 uint
#define AU2 uint2
#define AU3 uint3
#define AU4 uint4
//------------------------------------------------------------------------------------------------------------------------------
#define ASU1 int
#define ASU2 int2
#define ASU3 int3
#define ASU4 int4
#endif
//==============================================================================================================================
#define AF1_AU1(x) asfloat(AU1(x))
#define AF2_AU2(x) asfloat(AU2(x))
#define AF3_AU3(x) asfloat(AU3(x))
#define AF4_AU4(x) asfloat(AU4(x))
//------------------------------------------------------------------------------------------------------------------------------
#define AU1_AF1(x) asuint(AF1(x))
#define AU2_AF2(x) asuint(AF2(x))
#define AU3_AF3(x) asuint(AF3(x))
#define AU4_AF4(x) asuint(AF4(x))
//------------------------------------------------------------------------------------------------------------------------------
AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);}
#define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);}
#define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a))
#define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x))
//------------------------------------------------------------------------------------------------------------------------------
AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));}
#define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x))
//==============================================================================================================================
AF1 AF1_x(AF1 a){return AF1(a);}
AF2 AF2_x(AF1 a){return AF2(a,a);}
AF3 AF3_x(AF1 a){return AF3(a,a,a);}
AF4 AF4_x(AF1 a){return AF4(a,a,a,a);}
#define AF1_(a) AF1_x(AF1(a))
#define AF2_(a) AF2_x(AF1(a))
#define AF3_(a) AF3_x(AF1(a))
#define AF4_(a) AF4_x(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
AU1 AU1_x(AU1 a){return AU1(a);}
AU2 AU2_x(AU1 a){return AU2(a,a);}
AU3 AU3_x(AU1 a){return AU3(a,a,a);}
AU4 AU4_x(AU1 a){return AU4(a,a,a,a);}
#define AU1_(a) AU1_x(AU1(a))
#define AU2_(a) AU2_x(AU1(a))
#define AU3_(a) AU3_x(AU1(a))
#define AU4_(a) AU4_x(AU1(a))
//==============================================================================================================================
AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));}
AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));}
AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));}
AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<<bits)-1;return (src>>off)&mask;}
AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));}
AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<<bits)-1;return (ins&mask)|(src&(~mask));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AClampF1(AF1 x,AF1 n,AF1 m){return max(n,min(x,m));}
AF2 AClampF2(AF2 x,AF2 n,AF2 m){return max(n,min(x,m));}
AF3 AClampF3(AF3 x,AF3 n,AF3 m){return max(n,min(x,m));}
AF4 AClampF4(AF4 x,AF4 n,AF4 m){return max(n,min(x,m));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AFractF1(AF1 x){return x-floor(x);}
AF2 AFractF2(AF2 x){return x-floor(x);}
AF3 AFractF3(AF3 x){return x-floor(x);}
AF4 AFractF4(AF4 x){return x-floor(x);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ALerpF1(AF1 x,AF1 y,AF1 a){return lerp(x,y,a);}
AF2 ALerpF2(AF2 x,AF2 y,AF2 a){return lerp(x,y,a);}
AF3 ALerpF3(AF3 x,AF3 y,AF3 a){return lerp(x,y,a);}
AF4 ALerpF4(AF4 x,AF4 y,AF4 a){return lerp(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AMax3F1(AF1 x,AF1 y,AF1 z){return max(x,max(y,z));}
AF2 AMax3F2(AF2 x,AF2 y,AF2 z){return max(x,max(y,z));}
AF3 AMax3F3(AF3 x,AF3 y,AF3 z){return max(x,max(y,z));}
AF4 AMax3F4(AF4 x,AF4 y,AF4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMax3SU1(AU1 x,AU1 y,AU1 z){return AU1(max(ASU1(x),max(ASU1(y),ASU1(z))));}
AU2 AMax3SU2(AU2 x,AU2 y,AU2 z){return AU2(max(ASU2(x),max(ASU2(y),ASU2(z))));}
AU3 AMax3SU3(AU3 x,AU3 y,AU3 z){return AU3(max(ASU3(x),max(ASU3(y),ASU3(z))));}
AU4 AMax3SU4(AU4 x,AU4 y,AU4 z){return AU4(max(ASU4(x),max(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMax3U1(AU1 x,AU1 y,AU1 z){return max(x,max(y,z));}
AU2 AMax3U2(AU2 x,AU2 y,AU2 z){return max(x,max(y,z));}
AU3 AMax3U3(AU3 x,AU3 y,AU3 z){return max(x,max(y,z));}
AU4 AMax3U4(AU4 x,AU4 y,AU4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMaxSU1(AU1 a,AU1 b){return AU1(max(ASU1(a),ASU1(b)));}
AU2 AMaxSU2(AU2 a,AU2 b){return AU2(max(ASU2(a),ASU2(b)));}
AU3 AMaxSU3(AU3 a,AU3 b){return AU3(max(ASU3(a),ASU3(b)));}
AU4 AMaxSU4(AU4 a,AU4 b){return AU4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AMed3F1(AF1 x,AF1 y,AF1 z){return max(min(x,y),min(max(x,y),z));}
AF2 AMed3F2(AF2 x,AF2 y,AF2 z){return max(min(x,y),min(max(x,y),z));}
AF3 AMed3F3(AF3 x,AF3 y,AF3 z){return max(min(x,y),min(max(x,y),z));}
AF4 AMed3F4(AF4 x,AF4 y,AF4 z){return max(min(x,y),min(max(x,y),z));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AMin3F1(AF1 x,AF1 y,AF1 z){return min(x,min(y,z));}
AF2 AMin3F2(AF2 x,AF2 y,AF2 z){return min(x,min(y,z));}
AF3 AMin3F3(AF3 x,AF3 y,AF3 z){return min(x,min(y,z));}
AF4 AMin3F4(AF4 x,AF4 y,AF4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMin3SU1(AU1 x,AU1 y,AU1 z){return AU1(min(ASU1(x),min(ASU1(y),ASU1(z))));}
AU2 AMin3SU2(AU2 x,AU2 y,AU2 z){return AU2(min(ASU2(x),min(ASU2(y),ASU2(z))));}
AU3 AMin3SU3(AU3 x,AU3 y,AU3 z){return AU3(min(ASU3(x),min(ASU3(y),ASU3(z))));}
AU4 AMin3SU4(AU4 x,AU4 y,AU4 z){return AU4(min(ASU4(x),min(ASU4(y),ASU4(z))));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMin3U1(AU1 x,AU1 y,AU1 z){return min(x,min(y,z));}
AU2 AMin3U2(AU2 x,AU2 y,AU2 z){return min(x,min(y,z));}
AU3 AMin3U3(AU3 x,AU3 y,AU3 z){return min(x,min(y,z));}
AU4 AMin3U4(AU4 x,AU4 y,AU4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AMinSU1(AU1 a,AU1 b){return AU1(min(ASU1(a),ASU1(b)));}
AU2 AMinSU2(AU2 a,AU2 b){return AU2(min(ASU2(a),ASU2(b)));}
AU3 AMinSU3(AU3 a,AU3 b){return AU3(min(ASU3(a),ASU3(b)));}
AU4 AMinSU4(AU4 a,AU4 b){return AU4(min(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ANCosF1(AF1 x){return cos(x*AF1_(A_2PI));}
AF2 ANCosF2(AF2 x){return cos(x*AF2_(A_2PI));}
AF3 ANCosF3(AF3 x){return cos(x*AF3_(A_2PI));}
AF4 ANCosF4(AF4 x){return cos(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ANSinF1(AF1 x){return sin(x*AF1_(A_2PI));}
AF2 ANSinF2(AF2 x){return sin(x*AF2_(A_2PI));}
AF3 ANSinF3(AF3 x){return sin(x*AF3_(A_2PI));}
AF4 ANSinF4(AF4 x){return sin(x*AF4_(A_2PI));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ARcpF1(AF1 x){return rcp(x);}
AF2 ARcpF2(AF2 x){return rcp(x);}
AF3 ARcpF3(AF3 x){return rcp(x);}
AF4 ARcpF4(AF4 x){return rcp(x);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ARsqF1(AF1 x){return rsqrt(x);}
AF2 ARsqF2(AF2 x){return rsqrt(x);}
AF3 ARsqF3(AF3 x){return rsqrt(x);}
AF4 ARsqF4(AF4 x){return rsqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ASatF1(AF1 x){return saturate(x);}
AF2 ASatF2(AF2 x){return saturate(x);}
AF3 ASatF3(AF3 x){return saturate(x);}
AF4 ASatF4(AF4 x){return saturate(x);}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AShrSU1(AU1 a,AU1 b){return AU1(ASU1(a)>>ASU1(b));}
AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));}
AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));}
AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// HLSL BYTE
//==============================================================================================================================
#ifdef A_BYTE
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// HLSL HALF
//==============================================================================================================================
#ifdef A_HALF
#ifdef A_HLSL_6_2
#define AH1 float16_t
#define AH2 float16_t2
#define AH3 float16_t3
#define AH4 float16_t4
//------------------------------------------------------------------------------------------------------------------------------
#define AW1 uint16_t
#define AW2 uint16_t2
#define AW3 uint16_t3
#define AW4 uint16_t4
//------------------------------------------------------------------------------------------------------------------------------
#define ASW1 int16_t
#define ASW2 int16_t2
#define ASW3 int16_t3
#define ASW4 int16_t4
#else
#define AH1 min16float
#define AH2 min16float2
#define AH3 min16float3
#define AH4 min16float4
//------------------------------------------------------------------------------------------------------------------------------
#define AW1 min16uint
#define AW2 min16uint2
#define AW3 min16uint3
#define AW4 min16uint4
//------------------------------------------------------------------------------------------------------------------------------
#define ASW1 min16int
#define ASW2 min16int2
#define ASW3 min16int3
#define ASW4 min16int4
#endif
//==============================================================================================================================
// Need to use manual unpack to get optimal execution (don't use packed types in buffers directly).
// Unpack requires this pattern: https://gpuopen.com/first-steps-implementing-fp16/
AH2 AH2_AU1_x(AU1 x){AF2 t=f16tof32(AU2(x&0xFFFF,x>>16));return AH2(t);}
AH4 AH4_AU2_x(AU2 x){return AH4(AH2_AU1_x(x.x),AH2_AU1_x(x.y));}
AW2 AW2_AU1_x(AU1 x){AU2 t=AU2(x&0xFFFF,x>>16);return AW2(t);}
AW4 AW4_AU2_x(AU2 x){return AW4(AW2_AU1_x(x.x),AW2_AU1_x(x.y));}
#define AH2_AU1(x) AH2_AU1_x(AU1(x))
#define AH4_AU2(x) AH4_AU2_x(AU2(x))
#define AW2_AU1(x) AW2_AU1_x(AU1(x))
#define AW4_AU2(x) AW4_AU2_x(AU2(x))
//------------------------------------------------------------------------------------------------------------------------------
AU1 AU1_AH2_x(AH2 x){return f32tof16(x.x)+(f32tof16(x.y)<<16);}
AU2 AU2_AH4_x(AH4 x){return AU2(AU1_AH2_x(x.xy),AU1_AH2_x(x.zw));}
AU1 AU1_AW2_x(AW2 x){return AU1(x.x)+(AU1(x.y)<<16);}
AU2 AU2_AW4_x(AW4 x){return AU2(AU1_AW2_x(x.xy),AU1_AW2_x(x.zw));}
#define AU1_AH2(x) AU1_AH2_x(AH2(x))
#define AU2_AH4(x) AU2_AH4_x(AH4(x))
#define AU1_AW2(x) AU1_AW2_x(AW2(x))
#define AU2_AW4(x) AU2_AW4_x(AW4(x))
//==============================================================================================================================
#if defined(A_HLSL_6_2) && !defined(A_NO_16_BIT_CAST)
#define AW1_AH1(x) asuint16(x)
#define AW2_AH2(x) asuint16(x)
#define AW3_AH3(x) asuint16(x)
#define AW4_AH4(x) asuint16(x)
#else
#define AW1_AH1(a) AW1(f32tof16(AF1(a)))
#define AW2_AH2(a) AW2(AW1_AH1((a).x),AW1_AH1((a).y))
#define AW3_AH3(a) AW3(AW1_AH1((a).x),AW1_AH1((a).y),AW1_AH1((a).z))
#define AW4_AH4(a) AW4(AW1_AH1((a).x),AW1_AH1((a).y),AW1_AH1((a).z),AW1_AH1((a).w))
#endif
//------------------------------------------------------------------------------------------------------------------------------
#if defined(A_HLSL_6_2) && !defined(A_NO_16_BIT_CAST)
#define AH1_AW1(x) asfloat16(x)
#define AH2_AW2(x) asfloat16(x)
#define AH3_AW3(x) asfloat16(x)
#define AH4_AW4(x) asfloat16(x)
#else
#define AH1_AW1(a) AH1(f16tof32(AU1(a)))
#define AH2_AW2(a) AH2(AH1_AW1((a).x),AH1_AW1((a).y))
#define AH3_AW3(a) AH3(AH1_AW1((a).x),AH1_AW1((a).y),AH1_AW1((a).z))
#define AH4_AW4(a) AH4(AH1_AW1((a).x),AH1_AW1((a).y),AH1_AW1((a).z),AH1_AW1((a).w))
#endif
//==============================================================================================================================
AH1 AH1_x(AH1 a){return AH1(a);}
AH2 AH2_x(AH1 a){return AH2(a,a);}
AH3 AH3_x(AH1 a){return AH3(a,a,a);}
AH4 AH4_x(AH1 a){return AH4(a,a,a,a);}
#define AH1_(a) AH1_x(AH1(a))
#define AH2_(a) AH2_x(AH1(a))
#define AH3_(a) AH3_x(AH1(a))
#define AH4_(a) AH4_x(AH1(a))
//------------------------------------------------------------------------------------------------------------------------------
AW1 AW1_x(AW1 a){return AW1(a);}
AW2 AW2_x(AW1 a){return AW2(a,a);}
AW3 AW3_x(AW1 a){return AW3(a,a,a);}
AW4 AW4_x(AW1 a){return AW4(a,a,a,a);}
#define AW1_(a) AW1_x(AW1(a))
#define AW2_(a) AW2_x(AW1(a))
#define AW3_(a) AW3_x(AW1(a))
#define AW4_(a) AW4_x(AW1(a))
//==============================================================================================================================
AW1 AAbsSW1(AW1 a){return AW1(abs(ASW1(a)));}
AW2 AAbsSW2(AW2 a){return AW2(abs(ASW2(a)));}
AW3 AAbsSW3(AW3 a){return AW3(abs(ASW3(a)));}
AW4 AAbsSW4(AW4 a){return AW4(abs(ASW4(a)));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AClampH1(AH1 x,AH1 n,AH1 m){return max(n,min(x,m));}
AH2 AClampH2(AH2 x,AH2 n,AH2 m){return max(n,min(x,m));}
AH3 AClampH3(AH3 x,AH3 n,AH3 m){return max(n,min(x,m));}
AH4 AClampH4(AH4 x,AH4 n,AH4 m){return max(n,min(x,m));}
//------------------------------------------------------------------------------------------------------------------------------
// V_FRACT_F16 (note DX frac() is different).
AH1 AFractH1(AH1 x){return x-floor(x);}
AH2 AFractH2(AH2 x){return x-floor(x);}
AH3 AFractH3(AH3 x){return x-floor(x);}
AH4 AFractH4(AH4 x){return x-floor(x);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ALerpH1(AH1 x,AH1 y,AH1 a){return lerp(x,y,a);}
AH2 ALerpH2(AH2 x,AH2 y,AH2 a){return lerp(x,y,a);}
AH3 ALerpH3(AH3 x,AH3 y,AH3 a){return lerp(x,y,a);}
AH4 ALerpH4(AH4 x,AH4 y,AH4 a){return lerp(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AMax3H1(AH1 x,AH1 y,AH1 z){return max(x,max(y,z));}
AH2 AMax3H2(AH2 x,AH2 y,AH2 z){return max(x,max(y,z));}
AH3 AMax3H3(AH3 x,AH3 y,AH3 z){return max(x,max(y,z));}
AH4 AMax3H4(AH4 x,AH4 y,AH4 z){return max(x,max(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AMaxSW1(AW1 a,AW1 b){return AW1(max(ASU1(a),ASU1(b)));}
AW2 AMaxSW2(AW2 a,AW2 b){return AW2(max(ASU2(a),ASU2(b)));}
AW3 AMaxSW3(AW3 a,AW3 b){return AW3(max(ASU3(a),ASU3(b)));}
AW4 AMaxSW4(AW4 a,AW4 b){return AW4(max(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AMin3H1(AH1 x,AH1 y,AH1 z){return min(x,min(y,z));}
AH2 AMin3H2(AH2 x,AH2 y,AH2 z){return min(x,min(y,z));}
AH3 AMin3H3(AH3 x,AH3 y,AH3 z){return min(x,min(y,z));}
AH4 AMin3H4(AH4 x,AH4 y,AH4 z){return min(x,min(y,z));}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AMinSW1(AW1 a,AW1 b){return AW1(min(ASU1(a),ASU1(b)));}
AW2 AMinSW2(AW2 a,AW2 b){return AW2(min(ASU2(a),ASU2(b)));}
AW3 AMinSW3(AW3 a,AW3 b){return AW3(min(ASU3(a),ASU3(b)));}
AW4 AMinSW4(AW4 a,AW4 b){return AW4(min(ASU4(a),ASU4(b)));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ARcpH1(AH1 x){return rcp(x);}
AH2 ARcpH2(AH2 x){return rcp(x);}
AH3 ARcpH3(AH3 x){return rcp(x);}
AH4 ARcpH4(AH4 x){return rcp(x);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ARsqH1(AH1 x){return rsqrt(x);}
AH2 ARsqH2(AH2 x){return rsqrt(x);}
AH3 ARsqH3(AH3 x){return rsqrt(x);}
AH4 ARsqH4(AH4 x){return rsqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ASatH1(AH1 x){return saturate(x);}
AH2 ASatH2(AH2 x){return saturate(x);}
AH3 ASatH3(AH3 x){return saturate(x);}
AH4 ASatH4(AH4 x){return saturate(x);}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AShrSW1(AW1 a,AW1 b){return AW1(ASW1(a)>>ASW1(b));}
AW2 AShrSW2(AW2 a,AW2 b){return AW2(ASW2(a)>>ASW2(b));}
AW3 AShrSW3(AW3 a,AW3 b){return AW3(ASW3(a)>>ASW3(b));}
AW4 AShrSW4(AW4 a,AW4 b){return AW4(ASW4(a)>>ASW4(b));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// HLSL DOUBLE
//==============================================================================================================================
#ifdef A_DUBL
#ifdef A_HLSL_6_2
#define AD1 float64_t
#define AD2 float64_t2
#define AD3 float64_t3
#define AD4 float64_t4
#else
#define AD1 double
#define AD2 double2
#define AD3 double3
#define AD4 double4
#endif
//------------------------------------------------------------------------------------------------------------------------------
AD1 AD1_x(AD1 a){return AD1(a);}
AD2 AD2_x(AD1 a){return AD2(a,a);}
AD3 AD3_x(AD1 a){return AD3(a,a,a);}
AD4 AD4_x(AD1 a){return AD4(a,a,a,a);}
#define AD1_(a) AD1_x(AD1(a))
#define AD2_(a) AD2_x(AD1(a))
#define AD3_(a) AD3_x(AD1(a))
#define AD4_(a) AD4_x(AD1(a))
//==============================================================================================================================
AD1 AFractD1(AD1 a){return a-floor(a);}
AD2 AFractD2(AD2 a){return a-floor(a);}
AD3 AFractD3(AD3 a){return a-floor(a);}
AD4 AFractD4(AD4 a){return a-floor(a);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);}
AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);}
AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);}
AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ARcpD1(AD1 x){return rcp(x);}
AD2 ARcpD2(AD2 x){return rcp(x);}
AD3 ARcpD3(AD3 x){return rcp(x);}
AD4 ARcpD4(AD4 x){return rcp(x);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ARsqD1(AD1 x){return rsqrt(x);}
AD2 ARsqD2(AD2 x){return rsqrt(x);}
AD3 ARsqD3(AD3 x){return rsqrt(x);}
AD4 ARsqD4(AD4 x){return rsqrt(x);}
//------------------------------------------------------------------------------------------------------------------------------
AD1 ASatD1(AD1 x){return saturate(x);}
AD2 ASatD2(AD2 x){return saturate(x);}
AD3 ASatD3(AD3 x){return saturate(x);}
AD4 ASatD4(AD4 x){return saturate(x);}
#endif
//==============================================================================================================================
// HLSL WAVE
//==============================================================================================================================
#ifdef A_WAVE
// Where 'x' must be a compile time literal.
AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);}
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_HALF
AH2 AWaveXorH2(AH2 v,AU1 x){return AH2_AU1(WaveReadLaneAt(AU1_AH2(v),WaveGetLaneIndex()^x));}
AH4 AWaveXorH4(AH4 v,AU1 x){return AH4_AU2(WaveReadLaneAt(AU2_AH4(v),WaveGetLaneIndex()^x));}
AW2 AWaveXorW2(AW2 v,AU1 x){return AW2_AU1(WaveReadLaneAt(AU1_AW2(v),WaveGetLaneIndex()^x));}
AW4 AWaveXorW4(AW4 v,AU1 x){return AW4_AU1(WaveReadLaneAt(AU1_AW4(v),WaveGetLaneIndex()^x));}
#endif
#endif
//==============================================================================================================================
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
// GPU COMMON
//
//
//==============================================================================================================================
#ifdef A_GPU
// Negative and positive infinity.
#define A_INFP_F AF1_AU1(0x7f800000u)
#define A_INFN_F AF1_AU1(0xff800000u)
//------------------------------------------------------------------------------------------------------------------------------
// Copy sign from 's' to positive 'd'.
AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));}
AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));}
AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));}
AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));}
//------------------------------------------------------------------------------------------------------------------------------
// Single operation to return (useful to create a mask to use in lerp for branch free logic),
// m=NaN := 0
// m>=0 := 0
// m<0 := 1
// Uses the following useful floating point logic,
// saturate(+a*(-INF)==-INF) := 0
// saturate( 0*(-INF)== NaN) := 0
// saturate(-a*(-INF)==+INF) := 1
AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));}
AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));}
AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));}
AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));}
AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));}
AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));}
AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));}
//==============================================================================================================================
#ifdef A_HALF
#ifdef A_HLSL_6_2
#define A_INFP_H AH1_AW1((uint16_t)0x7c00u)
#define A_INFN_H AH1_AW1((uint16_t)0xfc00u)
#else
#define A_INFP_H AH1_AW1(0x7c00u)
#define A_INFN_H AH1_AW1(0xfc00u)
#endif
//------------------------------------------------------------------------------------------------------------------------------
AH1 ACpySgnH1(AH1 d,AH1 s){return AH1_AW1(AW1_AH1(d)|(AW1_AH1(s)&AW1_(0x8000u)));}
AH2 ACpySgnH2(AH2 d,AH2 s){return AH2_AW2(AW2_AH2(d)|(AW2_AH2(s)&AW2_(0x8000u)));}
AH3 ACpySgnH3(AH3 d,AH3 s){return AH3_AW3(AW3_AH3(d)|(AW3_AH3(s)&AW3_(0x8000u)));}
AH4 ACpySgnH4(AH4 d,AH4 s){return AH4_AW4(AW4_AH4(d)|(AW4_AH4(s)&AW4_(0x8000u)));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ASignedH1(AH1 m){return ASatH1(m*AH1_(A_INFN_H));}
AH2 ASignedH2(AH2 m){return ASatH2(m*AH2_(A_INFN_H));}
AH3 ASignedH3(AH3 m){return ASatH3(m*AH3_(A_INFN_H));}
AH4 ASignedH4(AH4 m){return ASatH4(m*AH4_(A_INFN_H));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AGtZeroH1(AH1 m){return ASatH1(m*AH1_(A_INFP_H));}
AH2 AGtZeroH2(AH2 m){return ASatH2(m*AH2_(A_INFP_H));}
AH3 AGtZeroH3(AH3 m){return ASatH3(m*AH3_(A_INFP_H));}
AH4 AGtZeroH4(AH4 m){return ASatH4(m*AH4_(A_INFP_H));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// [FIS] FLOAT INTEGER SORTABLE
//------------------------------------------------------------------------------------------------------------------------------
// Float to integer sortable.
// - If sign bit=0, flip the sign bit (positives).
// - If sign bit=1, flip all bits (negatives).
// Integer sortable to float.
// - If sign bit=1, flip the sign bit (positives).
// - If sign bit=0, flip all bits (negatives).
// Has nice side effects.
// - Larger integers are more positive values.
// - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage).
// Burns 3 ops for conversion {shift,or,xor}.
//==============================================================================================================================
AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));}
//------------------------------------------------------------------------------------------------------------------------------
// Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value).
AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));}
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_HALF
AW1 AFisToW1(AW1 x){return x^(( AShrSW1(x,AW1_(15)))|AW1_(0x8000));}
AW1 AFisFromW1(AW1 x){return x^((~AShrSW1(x,AW1_(15)))|AW1_(0x8000));}
//------------------------------------------------------------------------------------------------------------------------------
AW2 AFisToW2(AW2 x){return x^(( AShrSW2(x,AW2_(15)))|AW2_(0x8000));}
AW2 AFisFromW2(AW2 x){return x^((~AShrSW2(x,AW2_(15)))|AW2_(0x8000));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// [PERM] V_PERM_B32
//------------------------------------------------------------------------------------------------------------------------------
// Support for V_PERM_B32 started in the 3rd generation of GCN.
//------------------------------------------------------------------------------------------------------------------------------
// yyyyxxxx - The 'i' input.
// 76543210
// ========
// HGFEDCBA - Naming on permutation.
//------------------------------------------------------------------------------------------------------------------------------
// TODO
// ====
// - Make sure compiler optimizes this.
//==============================================================================================================================
#ifdef A_HALF
AU1 APerm0E0A(AU2 i){return((i.x )&0xffu)|((i.y<<16)&0xff0000u);}
AU1 APerm0F0B(AU2 i){return((i.x>> 8)&0xffu)|((i.y<< 8)&0xff0000u);}
AU1 APerm0G0C(AU2 i){return((i.x>>16)&0xffu)|((i.y )&0xff0000u);}
AU1 APerm0H0D(AU2 i){return((i.x>>24)&0xffu)|((i.y>> 8)&0xff0000u);}
//------------------------------------------------------------------------------------------------------------------------------
AU1 APermHGFA(AU2 i){return((i.x )&0x000000ffu)|(i.y&0xffffff00u);}
AU1 APermHGFC(AU2 i){return((i.x>>16)&0x000000ffu)|(i.y&0xffffff00u);}
AU1 APermHGAE(AU2 i){return((i.x<< 8)&0x0000ff00u)|(i.y&0xffff00ffu);}
AU1 APermHGCE(AU2 i){return((i.x>> 8)&0x0000ff00u)|(i.y&0xffff00ffu);}
AU1 APermHAFE(AU2 i){return((i.x<<16)&0x00ff0000u)|(i.y&0xff00ffffu);}
AU1 APermHCFE(AU2 i){return((i.x )&0x00ff0000u)|(i.y&0xff00ffffu);}
AU1 APermAGFE(AU2 i){return((i.x<<24)&0xff000000u)|(i.y&0x00ffffffu);}
AU1 APermCGFE(AU2 i){return((i.x<< 8)&0xff000000u)|(i.y&0x00ffffffu);}
//------------------------------------------------------------------------------------------------------------------------------
AU1 APermGCEA(AU2 i){return((i.x)&0x00ff00ffu)|((i.y<<8)&0xff00ff00u);}
AU1 APermGECA(AU2 i){return(((i.x)&0xffu)|((i.x>>8)&0xff00u)|((i.y<<16)&0xff0000u)|((i.y<<8)&0xff000000u));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// [BUC] BYTE UNSIGNED CONVERSION
//------------------------------------------------------------------------------------------------------------------------------
// Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation.
// Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively.
//------------------------------------------------------------------------------------------------------------------------------
// OPCODE NOTES
// ============
// GCN does not do UNORM or SNORM for bytes in opcodes.
// - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float.
// - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer).
// V_PERM_B32 does byte packing with ability to zero fill bytes as well.
// - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo.
//------------------------------------------------------------------------------------------------------------------------------
// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops.
// ==== =====
// 0 : 0
// 1 : 1
// ...
// 255 : 255
// : 256 (just outside the encoding range)
//------------------------------------------------------------------------------------------------------------------------------
// BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
// ==== =====
// 0 : 0
// 1 : 1/512
// 2 : 1/256
// ...
// 64 : 1/8
// 128 : 1/4
// 255 : 255/512
// : 1/2 (just outside the encoding range)
//------------------------------------------------------------------------------------------------------------------------------
// OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES
// ============================================
// r=ABuc0FromU1(i)
// V_CVT_F32_UBYTE0 r,i
// --------------------------------------------
// r=ABuc0ToU1(d,i)
// V_CVT_PKACCUM_U8_F32 r,i,0,d
// --------------------------------------------
// d=ABuc0FromU2(i)
// Where 'k0' is an SGPR with 0x0E0A
// Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits
// V_PERM_B32 d,i.x,i.y,k0
// V_PK_FMA_F16 d,d,k1.x,0
// --------------------------------------------
// r=ABuc0ToU2(d,i)
// Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits
// Where 'k1' is an SGPR with 0x????
// Where 'k2' is an SGPR with 0x????
// V_PK_FMA_F16 i,i,k0.x,0
// V_PERM_B32 r.x,i,i,k1
// V_PERM_B32 r.y,i,i,k2
//==============================================================================================================================
// Peak range for 32-bit and 16-bit operations.
#define A_BUC_32 (255.0)
#define A_BUC_16 (255.0/512.0)
//==============================================================================================================================
#if 1
// Designed to be one V_CVT_PKACCUM_U8_F32.
// The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32.
AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u) )&(0x000000ffu));}
AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));}
AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));}
AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));}
//------------------------------------------------------------------------------------------------------------------------------
// Designed to be one V_CVT_F32_UBYTE*.
AF1 ABuc0FromU1(AU1 i){return AF1((i )&255u);}
AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);}
AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);}
AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);}
#endif
//==============================================================================================================================
#ifdef A_HALF
// Takes {x0,x1} and {y0,y1} and builds {{x0,y0},{x1,y1}}.
AW2 ABuc01ToW2(AH2 x,AH2 y){x*=AH2_(1.0/32768.0);y*=AH2_(1.0/32768.0);
return AW2_AU1(APermGCEA(AU2(AU1_AW2(AW2_AH2(x)),AU1_AW2(AW2_AH2(y)))));}
//------------------------------------------------------------------------------------------------------------------------------
// Designed for 3 ops to do SOA to AOS and conversion.
AU2 ABuc0ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));}
AU2 ABuc1ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));}
AU2 ABuc2ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));}
AU2 ABuc3ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)));
return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));}
//------------------------------------------------------------------------------------------------------------------------------
// Designed for 2 ops to do both AOS to SOA, and conversion.
AH2 ABuc0FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)))*AH2_(32768.0);}
AH2 ABuc1FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)))*AH2_(32768.0);}
AH2 ABuc2FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)))*AH2_(32768.0);}
AH2 ABuc3FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)))*AH2_(32768.0);}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// [BSC] BYTE SIGNED CONVERSION
//------------------------------------------------------------------------------------------------------------------------------
// Similar to [BUC].
// Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively.
//------------------------------------------------------------------------------------------------------------------------------
// ENCODING (without zero-based encoding)
// ========
// 0 = unused (can be used to mean something else)
// 1 = lowest value
// 128 = exact zero center (zero based encoding
// 255 = highest value
//------------------------------------------------------------------------------------------------------------------------------
// Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero).
// This is useful if there is a desire for cleared values to decode as zero.
//------------------------------------------------------------------------------------------------------------------------------
// BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32.
// ==== =====
// 0 : -127/512 (unused)
// 1 : -126/512
// 2 : -125/512
// ...
// 128 : 0
// ...
// 255 : 127/512
// : 1/4 (just outside the encoding range)
//==============================================================================================================================
// Peak range for 32-bit and 16-bit operations.
#define A_BSC_32 (127.0)
#define A_BSC_16 (127.0/512.0)
//==============================================================================================================================
#if 1
AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u) )&(0x000000ffu));}
AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));}
AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));}
AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));}
//------------------------------------------------------------------------------------------------------------------------------
AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u) )&(0x000000ffu)))^0x00000080u;}
AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;}
AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;}
AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ABsc0FromU1(AU1 i){return AF1((i )&255u)-128.0;}
AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;}
AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;}
AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ABsc0FromZbU1(AU1 i){return AF1(((i )&255u)^0x80u)-128.0;}
AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;}
AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;}
AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;}
#endif
//==============================================================================================================================
#ifdef A_HALF
// Takes {x0,x1} and {y0,y1} and builds {{x0,y0},{x1,y1}}.
AW2 ABsc01ToW2(AH2 x,AH2 y){x=x*AH2_(1.0/32768.0)+AH2_(0.25/32768.0);y=y*AH2_(1.0/32768.0)+AH2_(0.25/32768.0);
return AW2_AU1(APermGCEA(AU2(AU1_AW2(AW2_AH2(x)),AU1_AW2(AW2_AH2(y)))));}
//------------------------------------------------------------------------------------------------------------------------------
AU2 ABsc0ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));}
AU2 ABsc1ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));}
AU2 ABsc2ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));}
AU2 ABsc3ToU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)));
return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));}
//------------------------------------------------------------------------------------------------------------------------------
AU2 ABsc0ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
return AU2(APermHGFA(AU2(d.x,b)),APermHGFC(AU2(d.y,b)));}
AU2 ABsc1ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
return AU2(APermHGAE(AU2(d.x,b)),APermHGCE(AU2(d.y,b)));}
AU2 ABsc2ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
return AU2(APermHAFE(AU2(d.x,b)),APermHCFE(AU2(d.y,b)));}
AU2 ABsc3ToZbU2(AU2 d,AH2 i){AU1 b=AU1_AW2(AW2_AH2(i*AH2_(1.0/32768.0)+AH2_(0.25/32768.0)))^0x00800080u;
return AU2(APermAGFE(AU2(d.x,b)),APermCGFE(AU2(d.y,b)));}
//------------------------------------------------------------------------------------------------------------------------------
AH2 ABsc0FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)))*AH2_(32768.0)-AH2_(0.25);}
AH2 ABsc1FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)))*AH2_(32768.0)-AH2_(0.25);}
AH2 ABsc2FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)))*AH2_(32768.0)-AH2_(0.25);}
AH2 ABsc3FromU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)))*AH2_(32768.0)-AH2_(0.25);}
//------------------------------------------------------------------------------------------------------------------------------
AH2 ABsc0FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0E0A(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
AH2 ABsc1FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0F0B(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
AH2 ABsc2FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0G0C(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
AH2 ABsc3FromZbU2(AU2 i){return AH2_AW2(AW2_AU1(APerm0H0D(i)^0x00800080u))*AH2_(32768.0)-AH2_(0.25);}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// HALF APPROXIMATIONS
//------------------------------------------------------------------------------------------------------------------------------
// These support only positive inputs.
// Did not see value yet in specialization for range.
// Using quick testing, ended up mostly getting the same "best" approximation for various ranges.
// With hardware that can co-execute transcendentals, the value in approximations could be less than expected.
// However from a latency perspective, if execution of a transcendental is 4 clk, with no packed support, -> 8 clk total.
// And co-execution would require a compiler interleaving a lot of independent work for packed usage.
//------------------------------------------------------------------------------------------------------------------------------
// The one Newton Raphson iteration form of rsq() was skipped (requires 6 ops total).
// Same with sqrt(), as this could be x*rsq() (7 ops).
//==============================================================================================================================
#ifdef A_HALF
// Minimize squared error across full positive range, 2 ops.
// The 0x1de2 based approximation maps {0 to 1} input maps to < 1 output.
AH1 APrxLoSqrtH1(AH1 a){return AH1_AW1((AW1_AH1(a)>>AW1_(1))+AW1_(0x1de2));}
AH2 APrxLoSqrtH2(AH2 a){return AH2_AW2((AW2_AH2(a)>>AW2_(1))+AW2_(0x1de2));}
AH3 APrxLoSqrtH3(AH3 a){return AH3_AW3((AW3_AH3(a)>>AW3_(1))+AW3_(0x1de2));}
AH4 APrxLoSqrtH4(AH4 a){return AH4_AW4((AW4_AH4(a)>>AW4_(1))+AW4_(0x1de2));}
//------------------------------------------------------------------------------------------------------------------------------
// Lower precision estimation, 1 op.
// Minimize squared error across {smallest normal to 16384.0}.
AH1 APrxLoRcpH1(AH1 a){return AH1_AW1(AW1_(0x7784)-AW1_AH1(a));}
AH2 APrxLoRcpH2(AH2 a){return AH2_AW2(AW2_(0x7784)-AW2_AH2(a));}
AH3 APrxLoRcpH3(AH3 a){return AH3_AW3(AW3_(0x7784)-AW3_AH3(a));}
AH4 APrxLoRcpH4(AH4 a){return AH4_AW4(AW4_(0x7784)-AW4_AH4(a));}
//------------------------------------------------------------------------------------------------------------------------------
// Medium precision estimation, one Newton Raphson iteration, 3 ops.
AH1 APrxMedRcpH1(AH1 a){AH1 b=AH1_AW1(AW1_(0x778d)-AW1_AH1(a));return b*(-b*a+AH1_(2.0));}
AH2 APrxMedRcpH2(AH2 a){AH2 b=AH2_AW2(AW2_(0x778d)-AW2_AH2(a));return b*(-b*a+AH2_(2.0));}
AH3 APrxMedRcpH3(AH3 a){AH3 b=AH3_AW3(AW3_(0x778d)-AW3_AH3(a));return b*(-b*a+AH3_(2.0));}
AH4 APrxMedRcpH4(AH4 a){AH4 b=AH4_AW4(AW4_(0x778d)-AW4_AH4(a));return b*(-b*a+AH4_(2.0));}
//------------------------------------------------------------------------------------------------------------------------------
// Minimize squared error across {smallest normal to 16384.0}, 2 ops.
AH1 APrxLoRsqH1(AH1 a){return AH1_AW1(AW1_(0x59a3)-(AW1_AH1(a)>>AW1_(1)));}
AH2 APrxLoRsqH2(AH2 a){return AH2_AW2(AW2_(0x59a3)-(AW2_AH2(a)>>AW2_(1)));}
AH3 APrxLoRsqH3(AH3 a){return AH3_AW3(AW3_(0x59a3)-(AW3_AH3(a)>>AW3_(1)));}
AH4 APrxLoRsqH4(AH4 a){return AH4_AW4(AW4_(0x59a3)-(AW4_AH4(a)>>AW4_(1)));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// FLOAT APPROXIMATIONS
//------------------------------------------------------------------------------------------------------------------------------
// Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN",
// - Idea dates back to SGI, then to Quake 3, etc.
// - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf
// - sqrt(x)=rsqrt(x)*x
// - rcp(x)=rsqrt(x)*rsqrt(x) for positive x
// - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h
//------------------------------------------------------------------------------------------------------------------------------
// These below are from perhaps less complete searching for optimal.
// Used FP16 normal range for testing with +4096 32-bit step size for sampling error.
// So these match up well with the half approximations.
//==============================================================================================================================
AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));}
AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));}
AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));}
AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));}
AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));}
AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));}
AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));}
AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));}
AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));}
AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));}
AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));}
AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));}
AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// PQ APPROXIMATIONS
//------------------------------------------------------------------------------------------------------------------------------
// PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do
// PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%.
//==============================================================================================================================
// Helpers
AF1 Quart(AF1 a) { a = a * a; return a * a;}
AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; }
AF2 Quart(AF2 a) { a = a * a; return a * a; }
AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; }
AF3 Quart(AF3 a) { a = a * a; return a * a; }
AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; }
AF4 Quart(AF4 a) { a = a * a; return a * a; }
AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; }
//------------------------------------------------------------------------------------------------------------------------------
AF1 APrxPQToGamma2(AF1 a) { return Quart(a); }
AF1 APrxPQToLinear(AF1 a) { return Oct(a); }
AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); }
AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); }
AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); }
AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); }
//------------------------------------------------------------------------------------------------------------------------------
AF2 APrxPQToGamma2(AF2 a) { return Quart(a); }
AF2 APrxPQToLinear(AF2 a) { return Oct(a); }
AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); }
AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); }
AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); }
AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); }
//------------------------------------------------------------------------------------------------------------------------------
AF3 APrxPQToGamma2(AF3 a) { return Quart(a); }
AF3 APrxPQToLinear(AF3 a) { return Oct(a); }
AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); }
AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); }
AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); }
AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); }
//------------------------------------------------------------------------------------------------------------------------------
AF4 APrxPQToGamma2(AF4 a) { return Quart(a); }
AF4 APrxPQToLinear(AF4 a) { return Oct(a); }
AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); }
AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); }
AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); }
AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); }
AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); }
AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); }
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// PARABOLIC SIN & COS
//------------------------------------------------------------------------------------------------------------------------------
// Approximate answers to transcendental questions.
//------------------------------------------------------------------------------------------------------------------------------
//==============================================================================================================================
#if 1
// Valid input range is {-1 to 1} representing {0 to 2 pi}.
// Output range is {-1/4 to 1/4} representing {-1 to 1}.
AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD.
AF2 APSinF2(AF2 x){return x*abs(x)-x;}
AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT
AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);}
AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));}
#endif
//------------------------------------------------------------------------------------------------------------------------------
#ifdef A_HALF
// For a packed {sin,cos} pair,
// - Native takes 16 clocks and 4 issue slots (no packed transcendentals).
// - Parabolic takes 8 clocks and 8 issue slots (only fract is non-packed).
AH1 APSinH1(AH1 x){return x*abs(x)-x;}
AH2 APSinH2(AH2 x){return x*abs(x)-x;} // AND,FMA
AH1 APCosH1(AH1 x){x=AFractH1(x*AH1_(0.5)+AH1_(0.75));x=x*AH1_(2.0)-AH1_(1.0);return APSinH1(x);}
AH2 APCosH2(AH2 x){x=AFractH2(x*AH2_(0.5)+AH2_(0.75));x=x*AH2_(2.0)-AH2_(1.0);return APSinH2(x);} // 3x FMA, 2xFRACT, AND
AH2 APSinCosH1(AH1 x){AH1 y=AFractH1(x*AH1_(0.5)+AH1_(0.75));y=y*AH1_(2.0)-AH1_(1.0);return APSinH2(AH2(x,y));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// [ZOL] ZERO ONE LOGIC
//------------------------------------------------------------------------------------------------------------------------------
// Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit.
//------------------------------------------------------------------------------------------------------------------------------
// 0 := false
// 1 := true
//------------------------------------------------------------------------------------------------------------------------------
// AndNot(x,y) -> !(x&y) .... One op.
// AndOr(x,y,z) -> (x&y)|z ... One op.
// GtZero(x) -> x>0.0 ..... One op.
// Sel(x,y,z) -> x?y:z ..... Two ops, has no precision loss.
// Signed(x) -> x<0.0 ..... One op.
// ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer.
//------------------------------------------------------------------------------------------------------------------------------
// OPTIMIZATION NOTES
// ==================
// - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'.
// For example 'a.xy*k.xx+k.yy'.
//==============================================================================================================================
#if 1
AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);}
AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);}
AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);}
AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AZolNotU1(AU1 x){return x^AU1_(1);}
AU2 AZolNotU2(AU2 x){return x^AU2_(1);}
AU3 AZolNotU3(AU3 x){return x^AU3_(1);}
AU4 AZolNotU4(AU4 x){return x^AU4_(1);}
//------------------------------------------------------------------------------------------------------------------------------
AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);}
AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);}
AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);}
AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);}
//==============================================================================================================================
AU1 AZolF1ToU1(AF1 x){return AU1(x);}
AU2 AZolF2ToU2(AF2 x){return AU2(x);}
AU3 AZolF3ToU3(AF3 x){return AU3(x);}
AU4 AZolF4ToU4(AF4 x){return AU4(x);}
//------------------------------------------------------------------------------------------------------------------------------
// 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled).
AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);}
AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);}
AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);}
AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolU1ToF1(AU1 x){return AF1(x);}
AF2 AZolU2ToF2(AU2 x){return AF2(x);}
AF3 AZolU3ToF3(AU3 x){return AF3(x);}
AF4 AZolU4ToF4(AU4 x){return AF4(x);}
//==============================================================================================================================
AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);}
AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);}
AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);}
AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);}
AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);}
AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);}
AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);}
AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);}
AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);}
AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));}
AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));}
AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));}
AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;}
AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;}
AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;}
AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);}
AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);}
AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);}
AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;}
AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;}
AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;}
AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));}
AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));}
AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));}
AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));}
AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));}
AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));}
AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));}
#endif
//==============================================================================================================================
#ifdef A_HALF
AW1 AZolAndW1(AW1 x,AW1 y){return min(x,y);}
AW2 AZolAndW2(AW2 x,AW2 y){return min(x,y);}
AW3 AZolAndW3(AW3 x,AW3 y){return min(x,y);}
AW4 AZolAndW4(AW4 x,AW4 y){return min(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AZolNotW1(AW1 x){return x^AW1_(1);}
AW2 AZolNotW2(AW2 x){return x^AW2_(1);}
AW3 AZolNotW3(AW3 x){return x^AW3_(1);}
AW4 AZolNotW4(AW4 x){return x^AW4_(1);}
//------------------------------------------------------------------------------------------------------------------------------
AW1 AZolOrW1(AW1 x,AW1 y){return max(x,y);}
AW2 AZolOrW2(AW2 x,AW2 y){return max(x,y);}
AW3 AZolOrW3(AW3 x,AW3 y){return max(x,y);}
AW4 AZolOrW4(AW4 x,AW4 y){return max(x,y);}
//==============================================================================================================================
// Uses denormal trick.
AW1 AZolH1ToW1(AH1 x){return AW1_AH1(x*AH1_AW1(AW1_(1)));}
AW2 AZolH2ToW2(AH2 x){return AW2_AH2(x*AH2_AW2(AW2_(1)));}
AW3 AZolH3ToW3(AH3 x){return AW3_AH3(x*AH3_AW3(AW3_(1)));}
AW4 AZolH4ToW4(AH4 x){return AW4_AH4(x*AH4_AW4(AW4_(1)));}
//------------------------------------------------------------------------------------------------------------------------------
// AMD arch lacks a packed conversion opcode.
AH1 AZolW1ToH1(AW1 x){return AH1_AW1(x*AW1_AH1(AH1_(1.0)));}
AH2 AZolW2ToH2(AW2 x){return AH2_AW2(x*AW2_AH2(AH2_(1.0)));}
AH3 AZolW1ToH3(AW3 x){return AH3_AW3(x*AW3_AH3(AH3_(1.0)));}
AH4 AZolW2ToH4(AW4 x){return AH4_AW4(x*AW4_AH4(AH4_(1.0)));}
//==============================================================================================================================
AH1 AZolAndH1(AH1 x,AH1 y){return min(x,y);}
AH2 AZolAndH2(AH2 x,AH2 y){return min(x,y);}
AH3 AZolAndH3(AH3 x,AH3 y){return min(x,y);}
AH4 AZolAndH4(AH4 x,AH4 y){return min(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 ASolAndNotH1(AH1 x,AH1 y){return (-x)*y+AH1_(1.0);}
AH2 ASolAndNotH2(AH2 x,AH2 y){return (-x)*y+AH2_(1.0);}
AH3 ASolAndNotH3(AH3 x,AH3 y){return (-x)*y+AH3_(1.0);}
AH4 ASolAndNotH4(AH4 x,AH4 y){return (-x)*y+AH4_(1.0);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AZolAndOrH1(AH1 x,AH1 y,AH1 z){return ASatH1(x*y+z);}
AH2 AZolAndOrH2(AH2 x,AH2 y,AH2 z){return ASatH2(x*y+z);}
AH3 AZolAndOrH3(AH3 x,AH3 y,AH3 z){return ASatH3(x*y+z);}
AH4 AZolAndOrH4(AH4 x,AH4 y,AH4 z){return ASatH4(x*y+z);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AZolGtZeroH1(AH1 x){return ASatH1(x*AH1_(A_INFP_H));}
AH2 AZolGtZeroH2(AH2 x){return ASatH2(x*AH2_(A_INFP_H));}
AH3 AZolGtZeroH3(AH3 x){return ASatH3(x*AH3_(A_INFP_H));}
AH4 AZolGtZeroH4(AH4 x){return ASatH4(x*AH4_(A_INFP_H));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AZolNotH1(AH1 x){return AH1_(1.0)-x;}
AH2 AZolNotH2(AH2 x){return AH2_(1.0)-x;}
AH3 AZolNotH3(AH3 x){return AH3_(1.0)-x;}
AH4 AZolNotH4(AH4 x){return AH4_(1.0)-x;}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AZolOrH1(AH1 x,AH1 y){return max(x,y);}
AH2 AZolOrH2(AH2 x,AH2 y){return max(x,y);}
AH3 AZolOrH3(AH3 x,AH3 y){return max(x,y);}
AH4 AZolOrH4(AH4 x,AH4 y){return max(x,y);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AZolSelH1(AH1 x,AH1 y,AH1 z){AH1 r=(-x)*z+z;return x*y+r;}
AH2 AZolSelH2(AH2 x,AH2 y,AH2 z){AH2 r=(-x)*z+z;return x*y+r;}
AH3 AZolSelH3(AH3 x,AH3 y,AH3 z){AH3 r=(-x)*z+z;return x*y+r;}
AH4 AZolSelH4(AH4 x,AH4 y,AH4 z){AH4 r=(-x)*z+z;return x*y+r;}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AZolSignedH1(AH1 x){return ASatH1(x*AH1_(A_INFN_H));}
AH2 AZolSignedH2(AH2 x){return ASatH2(x*AH2_(A_INFN_H));}
AH3 AZolSignedH3(AH3 x){return ASatH3(x*AH3_(A_INFN_H));}
AH4 AZolSignedH4(AH4 x){return ASatH4(x*AH4_(A_INFN_H));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// COLOR CONVERSIONS
//------------------------------------------------------------------------------------------------------------------------------
// These are all linear to/from some other space (where 'linear' has been shortened out of the function name).
// So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'.
// These are branch free implementations.
// The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion.
//------------------------------------------------------------------------------------------------------------------------------
// TRANSFER FUNCTIONS
// ==================
// 709 ..... Rec709 used for some HDTVs
// Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native
// Pq ...... PQ native for HDR10
// Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type
// Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations)
// Three ... Gamma 3.0, less fast, but good for HDR.
//------------------------------------------------------------------------------------------------------------------------------
// KEEPING TO SPEC
// ===============
// Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times.
// (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range).
// (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range).
// Also there is a slight step in the transition regions.
// Precision of the coefficients in the spec being the likely cause.
// Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store.
// This is to work around lack of hardware (typically only ROP does the conversion for free).
// To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free).
// So this header keeps with the spec.
// For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear.
// Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear.
//------------------------------------------------------------------------------------------------------------------------------
// FOR PQ
// ======
// Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2.
// All constants are only specified to FP32 precision.
// External PQ source reference,
// - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl
//------------------------------------------------------------------------------------------------------------------------------
// PACKED VERSIONS
// ===============
// These are the A*H2() functions.
// There is no PQ functions as FP16 seemed to not have enough precision for the conversion.
// The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors.
// Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least).
//------------------------------------------------------------------------------------------------------------------------------
// NOTES
// =====
// Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case.
//==============================================================================================================================
#if 1
AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099);
return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
//------------------------------------------------------------------------------------------------------------------------------
// Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma().
AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));}
AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));}
AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302));
return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));}
AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302));
return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));}
AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302));
return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055);
return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AToTwoF1(AF1 c){return sqrt(c);}
AF2 AToTwoF2(AF2 c){return sqrt(c);}
AF3 AToTwoF3(AF3 c){return sqrt(c);}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));}
AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));}
AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));}
#endif
//==============================================================================================================================
#if 1
// Unfortunately median won't work here.
AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099);
return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));}
AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));}
AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833));
return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));}
AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833));
return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));}
AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833));
return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));}
//------------------------------------------------------------------------------------------------------------------------------
// Unfortunately median won't work here.
AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055);
return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AFromTwoF1(AF1 c){return c*c;}
AF2 AFromTwoF2(AF2 c){return c*c;}
AF3 AFromTwoF3(AF3 c){return c*c;}
//------------------------------------------------------------------------------------------------------------------------------
AF1 AFromThreeF1(AF1 c){return c*c*c;}
AF2 AFromThreeF2(AF2 c){return c*c*c;}
AF3 AFromThreeF3(AF3 c){return c*c*c;}
#endif
//==============================================================================================================================
#ifdef A_HALF
AH1 ATo709H1(AH1 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099);
return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
AH2 ATo709H2(AH2 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099);
return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
AH3 ATo709H3(AH3 c){AH3 j=AH3(0.018*4.5,4.5,0.45);AH2 k=AH2(1.099,-0.099);
return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AToGammaH1(AH1 c,AH1 rcpX){return pow(c,AH1_(rcpX));}
AH2 AToGammaH2(AH2 c,AH1 rcpX){return pow(c,AH2_(rcpX));}
AH3 AToGammaH3(AH3 c,AH1 rcpX){return pow(c,AH3_(rcpX));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AToSrgbH1(AH1 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055);
return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );}
AH2 AToSrgbH2(AH2 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055);
return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );}
AH3 AToSrgbH3(AH3 c){AH3 j=AH3(0.0031308*12.92,12.92,1.0/2.4);AH2 k=AH2(1.055,-0.055);
return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AToTwoH1(AH1 c){return sqrt(c);}
AH2 AToTwoH2(AH2 c){return sqrt(c);}
AH3 AToTwoH3(AH3 c){return sqrt(c);}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AToThreeF1(AH1 c){return pow(c,AH1_(1.0/3.0));}
AH2 AToThreeF2(AH2 c){return pow(c,AH2_(1.0/3.0));}
AH3 AToThreeF3(AH3 c){return pow(c,AH3_(1.0/3.0));}
#endif
//==============================================================================================================================
#ifdef A_HALF
AH1 AFrom709H1(AH1 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099);
return AZolSelH1(AZolSignedH1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
AH2 AFrom709H2(AH2 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099);
return AZolSelH2(AZolSignedH2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
AH3 AFrom709H3(AH3 c){AH3 j=AH3(0.081/4.5,1.0/4.5,1.0/0.45);AH2 k=AH2(1.0/1.099,0.099/1.099);
return AZolSelH3(AZolSignedH3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AFromGammaH1(AH1 c,AH1 x){return pow(c,AH1_(x));}
AH2 AFromGammaH2(AH2 c,AH1 x){return pow(c,AH2_(x));}
AH3 AFromGammaH3(AH3 c,AH1 x){return pow(c,AH3_(x));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AHromSrgbF1(AH1 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055);
return AZolSelH1(AZolSignedH1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));}
AH2 AHromSrgbF2(AH2 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055);
return AZolSelH2(AZolSignedH2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));}
AH3 AHromSrgbF3(AH3 c){AH3 j=AH3(0.04045/12.92,1.0/12.92,2.4);AH2 k=AH2(1.0/1.055,0.055/1.055);
return AZolSelH3(AZolSignedH3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AFromTwoH1(AH1 c){return c*c;}
AH2 AFromTwoH2(AH2 c){return c*c;}
AH3 AFromTwoH3(AH3 c){return c*c;}
//------------------------------------------------------------------------------------------------------------------------------
AH1 AFromThreeH1(AH1 c){return c*c*c;}
AH2 AFromThreeH2(AH2 c){return c*c*c;}
AH3 AFromThreeH3(AH3 c){return c*c*c;}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// CS REMAP
//==============================================================================================================================
// Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear.
// 543210
// ======
// ..xxx.
// yy...y
AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));}
//==============================================================================================================================
// More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions.
// 543210
// ======
// .xx..x
// y..yy.
// Details,
// LANE TO 8x8 MAPPING
// ===================
// 00 01 08 09 10 11 18 19
// 02 03 0a 0b 12 13 1a 1b
// 04 05 0c 0d 14 15 1c 1d
// 06 07 0e 0f 16 17 1e 1f
// 20 21 28 29 30 31 38 39
// 22 23 2a 2b 32 33 3a 3b
// 24 25 2c 2d 34 35 3c 3d
// 26 27 2e 2f 36 37 3e 3f
AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));}
//==============================================================================================================================
#ifdef A_HALF
AW2 ARmp8x8H(AU1 a){return AW2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));}
AW2 ARmpRed8x8H(AU1 a){return AW2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));}
#endif
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// REFERENCE
//
//------------------------------------------------------------------------------------------------------------------------------
// IEEE FLOAT RULES
// ================
// - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1
// - {+/-}0 * {+/-}INF = NaN
// - -INF + (+INF) = NaN
// - {+/-}0 / {+/-}0 = NaN
// - {+/-}INF / {+/-}INF = NaN
// - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN)
// - 0 == -0
// - 4/0 = +INF
// - 4/-0 = -INF
// - 4+INF = +INF
// - 4-INF = -INF
// - 4*(+INF) = +INF
// - 4*(-INF) = -INF
// - -4*(+INF) = -INF
// - sqrt(+INF) = +INF
//------------------------------------------------------------------------------------------------------------------------------
// FP16 ENCODING
// =============
// fedcba9876543210
// ----------------
// ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals)
// .eeeee.......... 5-bit exponent
// .00000.......... denormals
// .00001.......... -14 exponent
// .11110.......... 15 exponent
// .111110000000000 infinity
// .11111nnnnnnnnnn NaN with n!=0
// s............... sign
//------------------------------------------------------------------------------------------------------------------------------
// FP16/INT16 ALIASING DENORMAL
// ============================
// 11-bit unsigned integers alias with half float denormal/normal values,
// 1 = 2^(-24) = 1/16777216 ....................... first denormal value
// 2 = 2^(-23)
// ...
// 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value
// 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers
// 2047 .............................................. last normal value that still maps to integers
// Scaling limits,
// 2^15 = 32768 ...................................... largest power of 2 scaling
// Largest pow2 conversion mapping is at *32768,
// 1 : 2^(-9) = 1/512
// 2 : 1/256
// 4 : 1/128
// 8 : 1/64
// 16 : 1/32
// 32 : 1/16
// 64 : 1/8
// 128 : 1/4
// 256 : 1/2
// 512 : 1
// 1024 : 2
// 2047 : a little less than 4
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
// GPU/CPU PORTABILITY
//
//
//------------------------------------------------------------------------------------------------------------------------------
// This is the GPU implementation.
// See the CPU implementation for docs.
//==============================================================================================================================
#ifdef A_GPU
#define A_TRUE true
#define A_FALSE false
#define A_STATIC
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY
//==============================================================================================================================
#define retAD2 AD2
#define retAD3 AD3
#define retAD4 AD4
#define retAF2 AF2
#define retAF3 AF3
#define retAF4 AF4
#define retAL2 AL2
#define retAL3 AL3
#define retAL4 AL4
#define retAU2 AU2
#define retAU3 AU3
#define retAU4 AU4
//------------------------------------------------------------------------------------------------------------------------------
#define inAD2 in AD2
#define inAD3 in AD3
#define inAD4 in AD4
#define inAF2 in AF2
#define inAF3 in AF3
#define inAF4 in AF4
#define inAL2 in AL2
#define inAL3 in AL3
#define inAL4 in AL4
#define inAU2 in AU2
#define inAU3 in AU3
#define inAU4 in AU4
//------------------------------------------------------------------------------------------------------------------------------
#define inoutAD2 inout AD2
#define inoutAD3 inout AD3
#define inoutAD4 inout AD4
#define inoutAF2 inout AF2
#define inoutAF3 inout AF3
#define inoutAF4 inout AF4
#define inoutAL2 inout AL2
#define inoutAL3 inout AL3
#define inoutAL4 inout AL4
#define inoutAU2 inout AU2
#define inoutAU3 inout AU3
#define inoutAU4 inout AU4
//------------------------------------------------------------------------------------------------------------------------------
#define outAD2 out AD2
#define outAD3 out AD3
#define outAD4 out AD4
#define outAF2 out AF2
#define outAF3 out AF3
#define outAF4 out AF4
#define outAL2 out AL2
#define outAL3 out AL3
#define outAL4 out AL4
#define outAU2 out AU2
#define outAU3 out AU3
#define outAU4 out AU4
//------------------------------------------------------------------------------------------------------------------------------
#define varAD2(x) AD2 x
#define varAD3(x) AD3 x
#define varAD4(x) AD4 x
#define varAF2(x) AF2 x
#define varAF3(x) AF3 x
#define varAF4(x) AF4 x
#define varAL2(x) AL2 x
#define varAL3(x) AL3 x
#define varAL4(x) AL4 x
#define varAU2(x) AU2 x
#define varAU3(x) AU3 x
#define varAU4(x) AU4 x
//------------------------------------------------------------------------------------------------------------------------------
#define initAD2(x,y) AD2(x,y)
#define initAD3(x,y,z) AD3(x,y,z)
#define initAD4(x,y,z,w) AD4(x,y,z,w)
#define initAF2(x,y) AF2(x,y)
#define initAF3(x,y,z) AF3(x,y,z)
#define initAF4(x,y,z,w) AF4(x,y,z,w)
#define initAL2(x,y) AL2(x,y)
#define initAL3(x,y,z) AL3(x,y,z)
#define initAL4(x,y,z,w) AL4(x,y,z,w)
#define initAU2(x,y) AU2(x,y)
#define initAU3(x,y,z) AU3(x,y,z)
#define initAU4(x,y,z,w) AU4(x,y,z,w)
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// SCALAR RETURN OPS
//==============================================================================================================================
#define AAbsD1(a) abs(AD1(a))
#define AAbsF1(a) abs(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define ACosD1(a) cos(AD1(a))
#define ACosF1(a) cos(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define ADotD2(a,b) dot(AD2(a),AD2(b))
#define ADotD3(a,b) dot(AD3(a),AD3(b))
#define ADotD4(a,b) dot(AD4(a),AD4(b))
#define ADotF2(a,b) dot(AF2(a),AF2(b))
#define ADotF3(a,b) dot(AF3(a),AF3(b))
#define ADotF4(a,b) dot(AF4(a),AF4(b))
//------------------------------------------------------------------------------------------------------------------------------
#define AExp2D1(a) exp2(AD1(a))
#define AExp2F1(a) exp2(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define AFloorD1(a) floor(AD1(a))
#define AFloorF1(a) floor(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define ALog2D1(a) log2(AD1(a))
#define ALog2F1(a) log2(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define AMaxD1(a,b) max(a,b)
#define AMaxF1(a,b) max(a,b)
#define AMaxL1(a,b) max(a,b)
#define AMaxU1(a,b) max(a,b)
//------------------------------------------------------------------------------------------------------------------------------
#define AMinD1(a,b) min(a,b)
#define AMinF1(a,b) min(a,b)
#define AMinL1(a,b) min(a,b)
#define AMinU1(a,b) min(a,b)
//------------------------------------------------------------------------------------------------------------------------------
#define ASinD1(a) sin(AD1(a))
#define ASinF1(a) sin(AF1(a))
//------------------------------------------------------------------------------------------------------------------------------
#define ASqrtD1(a) sqrt(AD1(a))
#define ASqrtF1(a) sqrt(AF1(a))
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// SCALAR RETURN OPS - DEPENDENT
//==============================================================================================================================
#define APowD1(a,b) pow(AD1(a),AF1(b))
#define APowF1(a,b) pow(AF1(a),AF1(b))
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// VECTOR OPS
//------------------------------------------------------------------------------------------------------------------------------
// These are added as needed for production or prototyping, so not necessarily a complete set.
// They follow a convention of taking in a destination and also returning the destination value to increase utility.
//==============================================================================================================================
#ifdef A_DUBL
AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;}
AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;}
AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;}
AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;}
AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;}
AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;}
AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;}
AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;}
AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;}
AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;}
AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;}
AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;}
AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;}
AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;}
AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;}
AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;}
AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;}
AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;}
AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;}
AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;}
AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;}
AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;}
AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;}
AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;}
AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;}
#endif
//==============================================================================================================================
AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;}
AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;}
AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;}
AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;}
AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;}
AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;}
AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;}
AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;}
AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;}
AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;}
AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;}
AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;}
AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;}
AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;}
AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;}
AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;}
AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;}
AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;}
AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;}
AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;}
AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;}
AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;}
AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;}
//------------------------------------------------------------------------------------------------------------------------------
AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;}
AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;}
AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;}
#endif
#define FSR_RCAS_F 1
AU4 con0;
AF4 FsrRcasLoadF(ASU2 p) { return AF4(texelFetch(source, p, 0)); }
void FsrRcasInputF(inout AF1 r, inout AF1 g, inout AF1 b) {}
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
//
// AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629
//
//
//------------------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//------------------------------------------------------------------------------------------------------------------------------
// FidelityFX Super Resolution Sample
//
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//------------------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//------------------------------------------------------------------------------------------------------------------------------
// ABOUT
// =====
// FSR is a collection of algorithms relating to generating a higher resolution image.
// This specific header focuses on single-image non-temporal image scaling, and related tools.
//
// The core functions are EASU and RCAS:
// [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter.
// [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS.
// RCAS needs to be applied after EASU as a separate pass.
//
// Optional utility functions are:
// [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling.
// [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back.
// [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
// See each individual sub-section for inline documentation.
//------------------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//------------------------------------------------------------------------------------------------------------------------------
// FUNCTION PERMUTATIONS
// =====================
// *F() ..... Single item computation with 32-bit.
// *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible.
// *Hx2() ... Processing two items in parallel with 16-bit, easier packing.
// Not all interfaces in this file have a *Hx2() form.
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING
//
//------------------------------------------------------------------------------------------------------------------------------
// EASU provides a high quality spatial-only scaling at relatively low cost.
// Meaning EASU is appropiate for laptops and other low-end GPUs.
// Quality from 1x to 4x area scaling is good.
//------------------------------------------------------------------------------------------------------------------------------
// The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel.
// EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos.
// This is also kept as simple as possible to have minimum runtime.
//------------------------------------------------------------------------------------------------------------------------------
// The lanzcos filter has negative lobes, so by itself it will introduce ringing.
// To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood,
// and limits output to the minimum and maximum of that neighborhood.
//------------------------------------------------------------------------------------------------------------------------------
// Input image requirements:
//
// Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported)
// Each channel needs to be in the range[0, 1]
// Any color primaries are supported
// Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0)
// There should be no banding in the input
// There should be no high amplitude noise in the input
// There should be no noise in the input that is not at input pixel granularity
// For performance purposes, use 32bpp formats
//------------------------------------------------------------------------------------------------------------------------------
// Best to apply EASU at the end of the frame after tonemapping
// but before film grain or composite of the UI.
//------------------------------------------------------------------------------------------------------------------------------
// Example of including this header for D3D HLSL :
//
// #define A_GPU 1
// #define A_HLSL 1
// #define A_HALF 1
// #include "ffx_a.h"
// #define FSR_EASU_H 1
// #define FSR_RCAS_H 1
// //declare input callbacks
// #include "ffx_fsr1.h"
//
// Example of including this header for Vulkan GLSL :
//
// #define A_GPU 1
// #define A_GLSL 1
// #define A_HALF 1
// #include "ffx_a.h"
// #define FSR_EASU_H 1
// #define FSR_RCAS_H 1
// //declare input callbacks
// #include "ffx_fsr1.h"
//
// Example of including this header for Vulkan HLSL :
//
// #define A_GPU 1
// #define A_HLSL 1
// #define A_HLSL_6_2 1
// #define A_NO_16_BIT_CAST 1
// #define A_HALF 1
// #include "ffx_a.h"
// #define FSR_EASU_H 1
// #define FSR_RCAS_H 1
// //declare input callbacks
// #include "ffx_fsr1.h"
//
// Example of declaring the required input callbacks for GLSL :
// The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'.
// EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion.
//
// AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));}
// AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));}
// AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));}
// ...
// The FsrEasuCon function needs to be called from the CPU or GPU to set up constants.
// The difference in viewport and input image size is there to support Dynamic Resolution Scaling.
// To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1.
// Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer.
// AU4 con0,con1,con2,con3;
// FsrEasuCon(con0,con1,con2,con3,
// 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled.
// 3840.0,2160.0, // The size of the input image.
// 2560.0,1440.0); // The output resolution.
//==============================================================================================================================
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// CONSTANT SETUP
//==============================================================================================================================
// Call to setup required constant values (works on CPU or GPU).
A_STATIC void FsrEasuCon(
outAU4 con0,
outAU4 con1,
outAU4 con2,
outAU4 con3,
// This the rendered image resolution being upscaled
AF1 inputViewportInPixelsX,
AF1 inputViewportInPixelsY,
// This is the resolution of the resource containing the input image (useful for dynamic resolution)
AF1 inputSizeInPixelsX,
AF1 inputSizeInPixelsY,
// This is the display resolution which the input image gets upscaled to
AF1 outputSizeInPixelsX,
AF1 outputSizeInPixelsY){
// Output integer position to a pixel position in viewport.
con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX));
con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY));
con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5));
con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5));
// Viewport pixel position to normalized image space.
// This is used to get upper-left of 'F' tap.
con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX));
con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY));
// Centers of gather4, first offset from upper-left of 'F'.
// +---+---+
// | | |
// +--(0)--+
// | b | c |
// +---F---+---+---+
// | e | f | g | h |
// +--(1)--+--(2)--+
// | i | j | k | l |
// +---+---+---+---+
// | n | o |
// +--(3)--+
// | | |
// +---+---+
con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX));
con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY));
// These are from (0) instead of 'F'.
con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX));
con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY));
con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX));
con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY));
con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX));
con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY));
con3[2]=con3[3]=0;}
//If the an offset into the input image resource
A_STATIC void FsrEasuConOffset(
outAU4 con0,
outAU4 con1,
outAU4 con2,
outAU4 con3,
// This the rendered image resolution being upscaled
AF1 inputViewportInPixelsX,
AF1 inputViewportInPixelsY,
// This is the resolution of the resource containing the input image (useful for dynamic resolution)
AF1 inputSizeInPixelsX,
AF1 inputSizeInPixelsY,
// This is the display resolution which the input image gets upscaled to
AF1 outputSizeInPixelsX,
AF1 outputSizeInPixelsY,
// This is the input image offset into the resource containing it (useful for dynamic resolution)
AF1 inputOffsetInPixelsX,
AF1 inputOffsetInPixelsY) {
FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY);
con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX);
con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// NON-PACKED 32-BIT VERSION
//==============================================================================================================================
#if defined(A_GPU)&&defined(FSR_EASU_F)
// Input callback prototypes, need to be implemented by calling shader
AF4 FsrEasuRF(AF2 p);
AF4 FsrEasuGF(AF2 p);
AF4 FsrEasuBF(AF2 p);
//------------------------------------------------------------------------------------------------------------------------------
// Filtering for a given tap for the scalar.
void FsrEasuTapF(
inout AF3 aC, // Accumulated color, with negative lobe.
inout AF1 aW, // Accumulated weight.
AF2 off, // Pixel offset from resolve position to tap.
AF2 dir, // Gradient direction.
AF2 len, // Length.
AF1 lob, // Negative lobe strength.
AF1 clp, // Clipping point.
AF3 c){ // Tap color.
// Rotate offset by direction.
AF2 v;
v.x=(off.x*( dir.x))+(off.y*dir.y);
v.y=(off.x*(-dir.y))+(off.y*dir.x);
// Anisotropy.
v*=len;
// Compute distance^2.
AF1 d2=v.x*v.x+v.y*v.y;
// Limit to the window as at corner, 2 taps can easily be outside.
d2=min(d2,clp);
// Approximation of lancos2 without sin() or rcp(), or sqrt() to get x.
// (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2
// |_______________________________________| |_______________|
// base window
// The general form of the 'base' is,
// (a*(b*x^2-1)^2-(a-1))
// Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe.
AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0);
AF1 wA=lob*d2+AF1_(-1.0);
wB*=wB;
wA*=wA;
wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0));
AF1 w=wB*wA;
// Do weighted average.
aC+=c*w;aW+=w;}
//------------------------------------------------------------------------------------------------------------------------------
// Accumulate direction and length.
void FsrEasuSetF(
inout AF2 dir,
inout AF1 len,
AF2 pp,
AP1 biS,AP1 biT,AP1 biU,AP1 biV,
AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){
// Compute bilinear weight, branches factor out as predicates are compiler time immediates.
// s t
// u v
AF1 w = AF1_(0.0);
if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y);
if(biT)w= pp.x *(AF1_(1.0)-pp.y);
if(biU)w=(AF1_(1.0)-pp.x)* pp.y ;
if(biV)w= pp.x * pp.y ;
// Direction is the '+' diff.
// a
// b c d
// e
// Then takes magnitude from abs average of both sides of 'c'.
// Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms.
AF1 dc=lD-lC;
AF1 cb=lC-lB;
AF1 lenX=max(abs(dc),abs(cb));
lenX=APrxLoRcpF1(lenX);
AF1 dirX=lD-lB;
dir.x+=dirX*w;
lenX=ASatF1(abs(dirX)*lenX);
lenX*=lenX;
len+=lenX*w;
// Repeat for the y axis.
AF1 ec=lE-lC;
AF1 ca=lC-lA;
AF1 lenY=max(abs(ec),abs(ca));
lenY=APrxLoRcpF1(lenY);
AF1 dirY=lE-lA;
dir.y+=dirY*w;
lenY=ASatF1(abs(dirY)*lenY);
lenY*=lenY;
len+=lenY*w;}
//------------------------------------------------------------------------------------------------------------------------------
void FsrEasuF(
out AF3 pix,
AU2 ip, // Integer pixel position in output.
AU4 con0, // Constants generated by FsrEasuCon().
AU4 con1,
AU4 con2,
AU4 con3){
//------------------------------------------------------------------------------------------------------------------------------
// Get position of 'f'.
AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw);
AF2 fp=floor(pp);
pp-=fp;
//------------------------------------------------------------------------------------------------------------------------------
// 12-tap kernel.
// b c
// e f g h
// i j k l
// n o
// Gather 4 ordering.
// a b
// r g
// For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions,
// a b <- unused (z)
// r g
// a b a b
// r g r g
// a b
// r g <- unused (z)
// Allowing dead-code removal to remove the 'z's.
AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw);
// These are from p0 to avoid pulling two constants on pre-Navi hardware.
AF2 p1=p0+AF2_AU2(con2.xy);
AF2 p2=p0+AF2_AU2(con2.zw);
AF2 p3=p0+AF2_AU2(con3.xy);
AF4 bczzR=FsrEasuRF(p0);
AF4 bczzG=FsrEasuGF(p0);
AF4 bczzB=FsrEasuBF(p0);
AF4 ijfeR=FsrEasuRF(p1);
AF4 ijfeG=FsrEasuGF(p1);
AF4 ijfeB=FsrEasuBF(p1);
AF4 klhgR=FsrEasuRF(p2);
AF4 klhgG=FsrEasuGF(p2);
AF4 klhgB=FsrEasuBF(p2);
AF4 zzonR=FsrEasuRF(p3);
AF4 zzonG=FsrEasuGF(p3);
AF4 zzonB=FsrEasuBF(p3);
//------------------------------------------------------------------------------------------------------------------------------
// Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD).
AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG);
AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG);
AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG);
AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG);
// Rename.
AF1 bL=bczzL.x;
AF1 cL=bczzL.y;
AF1 iL=ijfeL.x;
AF1 jL=ijfeL.y;
AF1 fL=ijfeL.z;
AF1 eL=ijfeL.w;
AF1 kL=klhgL.x;
AF1 lL=klhgL.y;
AF1 hL=klhgL.z;
AF1 gL=klhgL.w;
AF1 oL=zzonL.z;
AF1 nL=zzonL.w;
// Accumulate for bilinear interpolation.
AF2 dir=AF2_(0.0);
AF1 len=AF1_(0.0);
FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL);
FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL);
FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL);
FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL);
//------------------------------------------------------------------------------------------------------------------------------
// Normalize with approximation, and cleanup close to zero.
AF2 dir2=dir*dir;
AF1 dirR=dir2.x+dir2.y;
AP1 zro=dirR<AF1_(1.0/32768.0);
dirR=APrxLoRsqF1(dirR);
dirR=zro?AF1_(1.0):dirR;
dir.x=zro?AF1_(1.0):dir.x;
dir*=AF2_(dirR);
// Transform from {0 to 2} to {0 to 1} range, and shape with square.
len=len*AF1_(0.5);
len*=len;
// Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}.
AF1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpF1(max(abs(dir.x),abs(dir.y)));
// Anisotropic length after rotation,
// x := 1.0 lerp to 'stretch' on edges
// y := 1.0 lerp to 2x on edges
AF2 len2=AF2(AF1_(1.0)+(stretch-AF1_(1.0))*len,AF1_(1.0)+AF1_(-0.5)*len);
// Based on the amount of 'edge',
// the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}.
AF1 lob=AF1_(0.5)+AF1_((1.0/4.0-0.04)-0.5)*len;
// Set distance^2 clipping point to the end of the adjustable window.
AF1 clp=APrxLoRcpF1(lob);
//------------------------------------------------------------------------------------------------------------------------------
// Accumulation mixed with min/max of 4 nearest.
// b c
// e f g h
// i j k l
// n o
AF3 min4=min(AMin3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)),
AF3(klhgR.x,klhgG.x,klhgB.x));
AF3 max4=max(AMax3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)),
AF3(klhgR.x,klhgG.x,klhgB.x));
// Accumulation.
AF3 aC=AF3_(0.0);
AF1 aW=AF1_(0.0);
FsrEasuTapF(aC,aW,AF2( 0.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.x,bczzG.x,bczzB.x)); // b
FsrEasuTapF(aC,aW,AF2( 1.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.y,bczzG.y,bczzB.y)); // c
FsrEasuTapF(aC,aW,AF2(-1.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.x,ijfeG.x,ijfeB.x)); // i
FsrEasuTapF(aC,aW,AF2( 0.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.y,ijfeG.y,ijfeB.y)); // j
FsrEasuTapF(aC,aW,AF2( 0.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.z,ijfeG.z,ijfeB.z)); // f
FsrEasuTapF(aC,aW,AF2(-1.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.w,ijfeG.w,ijfeB.w)); // e
FsrEasuTapF(aC,aW,AF2( 1.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.x,klhgG.x,klhgB.x)); // k
FsrEasuTapF(aC,aW,AF2( 2.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.y,klhgG.y,klhgB.y)); // l
FsrEasuTapF(aC,aW,AF2( 2.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.z,klhgG.z,klhgB.z)); // h
FsrEasuTapF(aC,aW,AF2( 1.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.w,klhgG.w,klhgB.w)); // g
FsrEasuTapF(aC,aW,AF2( 1.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.z,zzonG.z,zzonB.z)); // o
FsrEasuTapF(aC,aW,AF2( 0.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.w,zzonG.w,zzonB.w)); // n
//------------------------------------------------------------------------------------------------------------------------------
// Normalize and dering.
pix=min(max4,max(min4,aC*AF3_(ARcpF1(aW))));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// PACKED 16-BIT VERSION
//==============================================================================================================================
#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_EASU_H)
// Input callback prototypes, need to be implemented by calling shader
AH4 FsrEasuRH(AF2 p);
AH4 FsrEasuGH(AF2 p);
AH4 FsrEasuBH(AF2 p);
//------------------------------------------------------------------------------------------------------------------------------
// This runs 2 taps in parallel.
void FsrEasuTapH(
inout AH2 aCR,inout AH2 aCG,inout AH2 aCB,
inout AH2 aW,
AH2 offX,AH2 offY,
AH2 dir,
AH2 len,
AH1 lob,
AH1 clp,
AH2 cR,AH2 cG,AH2 cB){
AH2 vX,vY;
vX=offX* dir.xx +offY*dir.yy;
vY=offX*(-dir.yy)+offY*dir.xx;
vX*=len.x;vY*=len.y;
AH2 d2=vX*vX+vY*vY;
d2=min(d2,AH2_(clp));
AH2 wB=AH2_(2.0/5.0)*d2+AH2_(-1.0);
AH2 wA=AH2_(lob)*d2+AH2_(-1.0);
wB*=wB;
wA*=wA;
wB=AH2_(25.0/16.0)*wB+AH2_(-(25.0/16.0-1.0));
AH2 w=wB*wA;
aCR+=cR*w;aCG+=cG*w;aCB+=cB*w;aW+=w;}
//------------------------------------------------------------------------------------------------------------------------------
// This runs 2 taps in parallel.
void FsrEasuSetH(
inout AH2 dirPX,inout AH2 dirPY,
inout AH2 lenP,
AH2 pp,
AP1 biST,AP1 biUV,
AH2 lA,AH2 lB,AH2 lC,AH2 lD,AH2 lE){
AH2 w = AH2_(0.0);
if(biST)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_(AH1_(1.0)-pp.y);
if(biUV)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_( pp.y);
// ABS is not free in the packed FP16 path.
AH2 dc=lD-lC;
AH2 cb=lC-lB;
AH2 lenX=max(abs(dc),abs(cb));
lenX=ARcpH2(lenX);
AH2 dirX=lD-lB;
dirPX+=dirX*w;
lenX=ASatH2(abs(dirX)*lenX);
lenX*=lenX;
lenP+=lenX*w;
AH2 ec=lE-lC;
AH2 ca=lC-lA;
AH2 lenY=max(abs(ec),abs(ca));
lenY=ARcpH2(lenY);
AH2 dirY=lE-lA;
dirPY+=dirY*w;
lenY=ASatH2(abs(dirY)*lenY);
lenY*=lenY;
lenP+=lenY*w;}
//------------------------------------------------------------------------------------------------------------------------------
void FsrEasuH(
out AH3 pix,
AU2 ip,
AU4 con0,
AU4 con1,
AU4 con2,
AU4 con3){
//------------------------------------------------------------------------------------------------------------------------------
AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw);
AF2 fp=floor(pp);
pp-=fp;
AH2 ppp=AH2(pp);
//------------------------------------------------------------------------------------------------------------------------------
AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw);
AF2 p1=p0+AF2_AU2(con2.xy);
AF2 p2=p0+AF2_AU2(con2.zw);
AF2 p3=p0+AF2_AU2(con3.xy);
AH4 bczzR=FsrEasuRH(p0);
AH4 bczzG=FsrEasuGH(p0);
AH4 bczzB=FsrEasuBH(p0);
AH4 ijfeR=FsrEasuRH(p1);
AH4 ijfeG=FsrEasuGH(p1);
AH4 ijfeB=FsrEasuBH(p1);
AH4 klhgR=FsrEasuRH(p2);
AH4 klhgG=FsrEasuGH(p2);
AH4 klhgB=FsrEasuBH(p2);
AH4 zzonR=FsrEasuRH(p3);
AH4 zzonG=FsrEasuGH(p3);
AH4 zzonB=FsrEasuBH(p3);
//------------------------------------------------------------------------------------------------------------------------------
AH4 bczzL=bczzB*AH4_(0.5)+(bczzR*AH4_(0.5)+bczzG);
AH4 ijfeL=ijfeB*AH4_(0.5)+(ijfeR*AH4_(0.5)+ijfeG);
AH4 klhgL=klhgB*AH4_(0.5)+(klhgR*AH4_(0.5)+klhgG);
AH4 zzonL=zzonB*AH4_(0.5)+(zzonR*AH4_(0.5)+zzonG);
AH1 bL=bczzL.x;
AH1 cL=bczzL.y;
AH1 iL=ijfeL.x;
AH1 jL=ijfeL.y;
AH1 fL=ijfeL.z;
AH1 eL=ijfeL.w;
AH1 kL=klhgL.x;
AH1 lL=klhgL.y;
AH1 hL=klhgL.z;
AH1 gL=klhgL.w;
AH1 oL=zzonL.z;
AH1 nL=zzonL.w;
// This part is different, accumulating 2 taps in parallel.
AH2 dirPX=AH2_(0.0);
AH2 dirPY=AH2_(0.0);
AH2 lenP=AH2_(0.0);
FsrEasuSetH(dirPX,dirPY,lenP,ppp,true, false,AH2(bL,cL),AH2(eL,fL),AH2(fL,gL),AH2(gL,hL),AH2(jL,kL));
FsrEasuSetH(dirPX,dirPY,lenP,ppp,false,true ,AH2(fL,gL),AH2(iL,jL),AH2(jL,kL),AH2(kL,lL),AH2(nL,oL));
AH2 dir=AH2(dirPX.r+dirPX.g,dirPY.r+dirPY.g);
AH1 len=lenP.r+lenP.g;
//------------------------------------------------------------------------------------------------------------------------------
AH2 dir2=dir*dir;
AH1 dirR=dir2.x+dir2.y;
AP1 zro=dirR<AH1_(1.0/32768.0);
dirR=APrxLoRsqH1(dirR);
dirR=zro?AH1_(1.0):dirR;
dir.x=zro?AH1_(1.0):dir.x;
dir*=AH2_(dirR);
len=len*AH1_(0.5);
len*=len;
AH1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpH1(max(abs(dir.x),abs(dir.y)));
AH2 len2=AH2(AH1_(1.0)+(stretch-AH1_(1.0))*len,AH1_(1.0)+AH1_(-0.5)*len);
AH1 lob=AH1_(0.5)+AH1_((1.0/4.0-0.04)-0.5)*len;
AH1 clp=APrxLoRcpH1(lob);
//------------------------------------------------------------------------------------------------------------------------------
// FP16 is different, using packed trick to do min and max in same operation.
AH2 bothR=max(max(AH2(-ijfeR.z,ijfeR.z),AH2(-klhgR.w,klhgR.w)),max(AH2(-ijfeR.y,ijfeR.y),AH2(-klhgR.x,klhgR.x)));
AH2 bothG=max(max(AH2(-ijfeG.z,ijfeG.z),AH2(-klhgG.w,klhgG.w)),max(AH2(-ijfeG.y,ijfeG.y),AH2(-klhgG.x,klhgG.x)));
AH2 bothB=max(max(AH2(-ijfeB.z,ijfeB.z),AH2(-klhgB.w,klhgB.w)),max(AH2(-ijfeB.y,ijfeB.y),AH2(-klhgB.x,klhgB.x)));
// This part is different for FP16, working pairs of taps at a time.
AH2 pR=AH2_(0.0);
AH2 pG=AH2_(0.0);
AH2 pB=AH2_(0.0);
AH2 pW=AH2_(0.0);
FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0, 1.0)-ppp.xx,AH2(-1.0,-1.0)-ppp.yy,dir,len2,lob,clp,bczzR.xy,bczzG.xy,bczzB.xy);
FsrEasuTapH(pR,pG,pB,pW,AH2(-1.0, 0.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,ijfeR.xy,ijfeG.xy,ijfeB.xy);
FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0,-1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,ijfeR.zw,ijfeG.zw,ijfeB.zw);
FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 2.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,klhgR.xy,klhgG.xy,klhgB.xy);
FsrEasuTapH(pR,pG,pB,pW,AH2( 2.0, 1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,klhgR.zw,klhgG.zw,klhgB.zw);
FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 0.0)-ppp.xx,AH2( 2.0, 2.0)-ppp.yy,dir,len2,lob,clp,zzonR.zw,zzonG.zw,zzonB.zw);
AH3 aC=AH3(pR.x+pR.y,pG.x+pG.y,pB.x+pB.y);
AH1 aW=pW.x+pW.y;
//------------------------------------------------------------------------------------------------------------------------------
// Slightly different for FP16 version due to combined min and max.
pix=min(AH3(bothR.y,bothG.y,bothB.y),max(-AH3(bothR.x,bothG.x,bothB.x),aC*AH3_(ARcpH1(aW))));}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING
//
//------------------------------------------------------------------------------------------------------------------------------
// CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness.
// RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping.
// RCAS also has a built in process to limit sharpening of what it detects as possible noise.
// RCAS sharper does not support scaling, as it should be applied after EASU scaling.
// Pass EASU output straight into RCAS, no color conversions necessary.
//------------------------------------------------------------------------------------------------------------------------------
// RCAS is based on the following logic.
// RCAS uses a 5 tap filter in a cross pattern (same as CAS),
// w n
// w 1 w for taps w m e
// w s
// Where 'w' is the negative lobe weight.
// output = (w*(n+e+w+s)+m)/(4*w+1)
// RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range,
// 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s)
// 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1)
// Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount.
// This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues.
// So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps.
// As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation.
// This stabilizes RCAS.
// RCAS does a simple highpass which is normalized against the local contrast then shaped,
// 0.25
// 0.25 -1 0.25
// 0.25
// This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges.
//
// GLSL example for the required callbacks :
//
// AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));}
// void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b)
// {
// //do any simple input color conversions here or leave empty if none needed
// }
//
// FsrRcasCon need to be called from the CPU or GPU to set up constants.
// Including a GPU example here, the 'con' value would be stored out to a constant buffer.
//
// AU4 con;
// FsrRcasCon(con,
// 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
// ---------------
// RCAS sharpening supports a CAS-like pass-through alpha via,
// #define FSR_RCAS_PASSTHROUGH_ALPHA 1
// RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise.
// Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define,
// #define FSR_RCAS_DENOISE 1
//==============================================================================================================================
// This is set at the limit of providing unnatural results for sharpening.
#define FSR_RCAS_LIMIT (0.25-(1.0/16.0))
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// CONSTANT SETUP
//==============================================================================================================================
// Call to setup required constant values (works on CPU or GPU).
A_STATIC void FsrRcasCon(
outAU4 con,
// The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}.
AF1 sharpness){
// Transform from stops to linear value.
sharpness=AExp2F1(-sharpness);
varAF2(hSharp)=initAF2(sharpness,sharpness);
con[0]=AU1_AF1(sharpness);
con[1]=AU1_AH2_AF2(hSharp);
con[2]=0;
con[3]=0;}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// NON-PACKED 32-BIT VERSION
//==============================================================================================================================
#if defined(A_GPU)&&defined(FSR_RCAS_F)
// Input callback prototypes that need to be implemented by calling shader
AF4 FsrRcasLoadF(ASU2 p);
void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b);
//------------------------------------------------------------------------------------------------------------------------------
void FsrRcasF(
out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
out AF1 pixG,
out AF1 pixB,
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
out AF1 pixA,
#endif
AU2 ip, // Integer pixel position in output.
AU4 con){ // Constant generated by RcasSetup().
// Algorithm uses minimal 3x3 pixel neighborhood.
// b
// d e f
// h
ASU2 sp=ASU2(ip);
AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb;
AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb;
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
AF4 ee=FsrRcasLoadF(sp);
AF3 e=ee.rgb;pixA=ee.a;
#else
AF3 e=FsrRcasLoadF(sp).rgb;
#endif
AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb;
AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb;
// Rename (32-bit) or regroup (16-bit).
AF1 bR=b.r;
AF1 bG=b.g;
AF1 bB=b.b;
AF1 dR=d.r;
AF1 dG=d.g;
AF1 dB=d.b;
AF1 eR=e.r;
AF1 eG=e.g;
AF1 eB=e.b;
AF1 fR=f.r;
AF1 fG=f.g;
AF1 fB=f.b;
AF1 hR=h.r;
AF1 hG=h.g;
AF1 hB=h.b;
// Run optional input transform.
FsrRcasInputF(bR,bG,bB);
FsrRcasInputF(dR,dG,dB);
FsrRcasInputF(eR,eG,eB);
FsrRcasInputF(fR,fG,fB);
FsrRcasInputF(hR,hG,hB);
// Luma times 2.
AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG);
AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG);
AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG);
AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG);
AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG);
// Noise detection.
AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL;
nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL)));
nz=AF1_(-0.5)*nz+AF1_(1.0);
// Min and max of ring.
AF1 mn4R=min(AMin3F1(bR,dR,fR),hR);
AF1 mn4G=min(AMin3F1(bG,dG,fG),hG);
AF1 mn4B=min(AMin3F1(bB,dB,fB),hB);
AF1 mx4R=max(AMax3F1(bR,dR,fR),hR);
AF1 mx4G=max(AMax3F1(bG,dG,fG),hG);
AF1 mx4B=max(AMax3F1(bB,dB,fB),hB);
// Immediate constants for peak range.
AF2 peakC=AF2(1.0,-1.0*4.0);
// Limiters, these need to be high precision RCPs.
AF1 hitMinR=min(mn4R,eR)*ARcpF1(AF1_(4.0)*mx4R);
AF1 hitMinG=min(mn4G,eG)*ARcpF1(AF1_(4.0)*mx4G);
AF1 hitMinB=min(mn4B,eB)*ARcpF1(AF1_(4.0)*mx4B);
AF1 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpF1(AF1_(4.0)*mn4R+peakC.y);
AF1 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpF1(AF1_(4.0)*mn4G+peakC.y);
AF1 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpF1(AF1_(4.0)*mn4B+peakC.y);
AF1 lobeR=max(-hitMinR,hitMaxR);
AF1 lobeG=max(-hitMinG,hitMaxG);
AF1 lobeB=max(-hitMinB,hitMaxB);
AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x);
// Apply noise removal.
#ifdef FSR_RCAS_DENOISE
lobe*=nz;
#endif
// Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0));
pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;
return;}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// NON-PACKED 16-BIT VERSION
//==============================================================================================================================
#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H)
// Input callback prototypes that need to be implemented by calling shader
AH4 FsrRcasLoadH(ASW2 p);
void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b);
//------------------------------------------------------------------------------------------------------------------------------
void FsrRcasH(
out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy.
out AH1 pixG,
out AH1 pixB,
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
out AH1 pixA,
#endif
AU2 ip, // Integer pixel position in output.
AU4 con){ // Constant generated by RcasSetup().
// Sharpening algorithm uses minimal 3x3 pixel neighborhood.
// b
// d e f
// h
ASW2 sp=ASW2(ip);
AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb;
AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb;
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
AH4 ee=FsrRcasLoadH(sp);
AH3 e=ee.rgb;pixA=ee.a;
#else
AH3 e=FsrRcasLoadH(sp).rgb;
#endif
AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb;
AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb;
// Rename (32-bit) or regroup (16-bit).
AH1 bR=b.r;
AH1 bG=b.g;
AH1 bB=b.b;
AH1 dR=d.r;
AH1 dG=d.g;
AH1 dB=d.b;
AH1 eR=e.r;
AH1 eG=e.g;
AH1 eB=e.b;
AH1 fR=f.r;
AH1 fG=f.g;
AH1 fB=f.b;
AH1 hR=h.r;
AH1 hG=h.g;
AH1 hB=h.b;
// Run optional input transform.
FsrRcasInputH(bR,bG,bB);
FsrRcasInputH(dR,dG,dB);
FsrRcasInputH(eR,eG,eB);
FsrRcasInputH(fR,fG,fB);
FsrRcasInputH(hR,hG,hB);
// Luma times 2.
AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG);
AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG);
AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG);
AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG);
AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG);
// Noise detection.
AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL;
nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL)));
nz=AH1_(-0.5)*nz+AH1_(1.0);
// Min and max of ring.
AH1 mn4R=min(AMin3H1(bR,dR,fR),hR);
AH1 mn4G=min(AMin3H1(bG,dG,fG),hG);
AH1 mn4B=min(AMin3H1(bB,dB,fB),hB);
AH1 mx4R=max(AMax3H1(bR,dR,fR),hR);
AH1 mx4G=max(AMax3H1(bG,dG,fG),hG);
AH1 mx4B=max(AMax3H1(bB,dB,fB),hB);
// Immediate constants for peak range.
AH2 peakC=AH2(1.0,-1.0*4.0);
// Limiters, these need to be high precision RCPs.
AH1 hitMinR=min(mn4R,eR)*ARcpH1(AH1_(4.0)*mx4R);
AH1 hitMinG=min(mn4G,eG)*ARcpH1(AH1_(4.0)*mx4G);
AH1 hitMinB=min(mn4B,eB)*ARcpH1(AH1_(4.0)*mx4B);
AH1 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpH1(AH1_(4.0)*mn4R+peakC.y);
AH1 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpH1(AH1_(4.0)*mn4G+peakC.y);
AH1 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpH1(AH1_(4.0)*mn4B+peakC.y);
AH1 lobeR=max(-hitMinR,hitMaxR);
AH1 lobeG=max(-hitMinG,hitMaxG);
AH1 lobeB=max(-hitMinB,hitMaxB);
AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x;
// Apply noise removal.
#ifdef FSR_RCAS_DENOISE
lobe*=nz;
#endif
// Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0));
pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
// PACKED 16-BIT VERSION
//==============================================================================================================================
#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2)
// Input callback prototypes that need to be implemented by the calling shader
AH4 FsrRcasLoadHx2(ASW2 p);
void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b);
//------------------------------------------------------------------------------------------------------------------------------
// Can be used to convert from packed Structures of Arrays to Arrays of Structures for store.
void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){
#ifdef A_HLSL
// Invoke a slower path for DX only, since it won't allow uninitialized values.
pix0.a=pix1.a=0.0;
#endif
pix0.rgb=AH3(pixR.x,pixG.x,pixB.x);
pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);}
//------------------------------------------------------------------------------------------------------------------------------
void FsrRcasHx2(
// Output values are for 2 8x8 tiles in a 16x8 region.
// pix<R,G,B>.x = left 8x8 tile
// pix<R,G,B>.y = right 8x8 tile
// This enables later processing to easily be packed as well.
out AH2 pixR,
out AH2 pixG,
out AH2 pixB,
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
out AH2 pixA,
#endif
AU2 ip, // Integer pixel position in output.
AU4 con){ // Constant generated by RcasSetup().
// No scaling algorithm uses minimal 3x3 pixel neighborhood.
ASW2 sp0=ASW2(ip);
AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb;
AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb;
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
AH4 ee0=FsrRcasLoadHx2(sp0);
AH3 e0=ee0.rgb;pixA.r=ee0.a;
#else
AH3 e0=FsrRcasLoadHx2(sp0).rgb;
#endif
AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb;
AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb;
ASW2 sp1=sp0+ASW2(8,0);
AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb;
AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb;
#ifdef FSR_RCAS_PASSTHROUGH_ALPHA
AH4 ee1=FsrRcasLoadHx2(sp1);
AH3 e1=ee1.rgb;pixA.g=ee1.a;
#else
AH3 e1=FsrRcasLoadHx2(sp1).rgb;
#endif
AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb;
AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb;
// Arrays of Structures to Structures of Arrays conversion.
AH2 bR=AH2(b0.r,b1.r);
AH2 bG=AH2(b0.g,b1.g);
AH2 bB=AH2(b0.b,b1.b);
AH2 dR=AH2(d0.r,d1.r);
AH2 dG=AH2(d0.g,d1.g);
AH2 dB=AH2(d0.b,d1.b);
AH2 eR=AH2(e0.r,e1.r);
AH2 eG=AH2(e0.g,e1.g);
AH2 eB=AH2(e0.b,e1.b);
AH2 fR=AH2(f0.r,f1.r);
AH2 fG=AH2(f0.g,f1.g);
AH2 fB=AH2(f0.b,f1.b);
AH2 hR=AH2(h0.r,h1.r);
AH2 hG=AH2(h0.g,h1.g);
AH2 hB=AH2(h0.b,h1.b);
// Run optional input transform.
FsrRcasInputHx2(bR,bG,bB);
FsrRcasInputHx2(dR,dG,dB);
FsrRcasInputHx2(eR,eG,eB);
FsrRcasInputHx2(fR,fG,fB);
FsrRcasInputHx2(hR,hG,hB);
// Luma times 2.
AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG);
AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG);
AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG);
AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG);
AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG);
// Noise detection.
AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL;
nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL)));
nz=AH2_(-0.5)*nz+AH2_(1.0);
// Min and max of ring.
AH2 mn4R=min(AMin3H2(bR,dR,fR),hR);
AH2 mn4G=min(AMin3H2(bG,dG,fG),hG);
AH2 mn4B=min(AMin3H2(bB,dB,fB),hB);
AH2 mx4R=max(AMax3H2(bR,dR,fR),hR);
AH2 mx4G=max(AMax3H2(bG,dG,fG),hG);
AH2 mx4B=max(AMax3H2(bB,dB,fB),hB);
// Immediate constants for peak range.
AH2 peakC=AH2(1.0,-1.0*4.0);
// Limiters, these need to be high precision RCPs.
AH2 hitMinR=min(mn4R,eR)*ARcpH2(AH2_(4.0)*mx4R);
AH2 hitMinG=min(mn4G,eG)*ARcpH2(AH2_(4.0)*mx4G);
AH2 hitMinB=min(mn4B,eB)*ARcpH2(AH2_(4.0)*mx4B);
AH2 hitMaxR=(peakC.x-max(mx4R,eR))*ARcpH2(AH2_(4.0)*mn4R+peakC.y);
AH2 hitMaxG=(peakC.x-max(mx4G,eG))*ARcpH2(AH2_(4.0)*mn4G+peakC.y);
AH2 hitMaxB=(peakC.x-max(mx4B,eB))*ARcpH2(AH2_(4.0)*mn4B+peakC.y);
AH2 lobeR=max(-hitMinR,hitMaxR);
AH2 lobeG=max(-hitMinG,hitMaxG);
AH2 lobeB=max(-hitMinB,hitMaxB);
AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x);
// Apply noise removal.
#ifdef FSR_RCAS_DENOISE
lobe*=nz;
#endif
// Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes.
AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0));
pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL;
pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL;
pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR
//
//------------------------------------------------------------------------------------------------------------------------------
// Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts.
// Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel.
// The 'Lfga*()' functions provide a convenient way to introduce grain.
// These functions limit grain based on distance to signal limits.
// This is done so that the grain is temporally energy preserving, and thus won't modify image tonality.
// Grain application should be done in a linear colorspace.
// The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased).
//------------------------------------------------------------------------------------------------------------------------------
// Usage,
// FsrLfga*(
// color, // In/out linear colorspace color {0 to 1} ranged.
// grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain.
// amount); // Amount of grain (0 to 1} ranged.
//------------------------------------------------------------------------------------------------------------------------------
// Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)'
//==============================================================================================================================
#if defined(A_GPU)
// Maximum grain is the minimum distance to the signal limit.
void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);}
#endif
//==============================================================================================================================
#if defined(A_GPU)&&defined(A_HALF)
// Half precision version (slower).
void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);}
//------------------------------------------------------------------------------------------------------------------------------
// Packed half precision version (faster).
void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){
cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER
//
//------------------------------------------------------------------------------------------------------------------------------
// This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear.
// The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering.
//------------------------------------------------------------------------------------------------------------------------------
// Reversible tonemapper usage,
// FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}.
// FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}.
//==============================================================================================================================
#if defined(A_GPU)
void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));}
// The extra max solves the c=1.0 case (which is a /0).
void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));}
#endif
//==============================================================================================================================
#if defined(A_GPU)&&defined(A_HALF)
void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));}
void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));}
//------------------------------------------------------------------------------------------------------------------------------
void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){
AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;}
void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){
AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//_____________________________________________________________/\_______________________________________________________________
//==============================================================================================================================
//
// FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER
//
//------------------------------------------------------------------------------------------------------------------------------
// Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion.
// Gamma 2.0 is used so that the conversion back to linear is just to square the color.
// The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively.
// Given good non-biased temporal blue noise as dither input,
// the output dither will temporally conserve energy.
// This is done by choosing the linear nearest step point instead of perceptual nearest.
// See code below for details.
//------------------------------------------------------------------------------------------------------------------------------
// DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION
// ===============================================
// - Output is 'uint(floor(saturate(n)*255.0+0.5))'.
// - Thus rounding is to nearest.
// - NaN gets converted to zero.
// - INF is clamped to {0.0 to 1.0}.
//==============================================================================================================================
#if defined(A_GPU)
// Hand tuned integer position to dither value, with more values than simple checkerboard.
// Only 32-bit has enough precision for this compddation.
// Output is {0 to <1}.
AF1 FsrTepdDitF(AU2 p,AU1 f){
AF1 x=AF1_(p.x+f);
AF1 y=AF1_(p.y);
// The 1.61803 golden ratio.
AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
// Number designed to provide a good visual pattern.
AF1 b=AF1_(1.0/3.69);
x=x*a+(y*b);
return AFractF1(x);}
//------------------------------------------------------------------------------------------------------------------------------
// This version is 8-bit gamma 2.0.
// The 'c' input is {0 to 1}.
// Output is {0 to 1} ready for image store.
void FsrTepdC8F(inout AF3 c,AF1 dit){
AF3 n=sqrt(c);
n=floor(n*AF3_(255.0))*AF3_(1.0/255.0);
AF3 a=n*n;
AF3 b=n+AF3_(1.0/255.0);b=b*b;
// Ratio of 'a' to 'b' required to produce 'c'.
// APrxLoRcpF1() won't work here (at least for very high dynamic ranges).
// APrxMedRcpF1() is an IADD,FMA,MUL.
AF3 r=(c-b)*APrxMedRcpF3(a-b);
// Use the ratio as a cutoff to choose 'a' or 'b'.
// AGtZeroF1() is a MUL.
c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));}
//------------------------------------------------------------------------------------------------------------------------------
// This version is 10-bit gamma 2.0.
// The 'c' input is {0 to 1}.
// Output is {0 to 1} ready for image store.
void FsrTepdC10F(inout AF3 c,AF1 dit){
AF3 n=sqrt(c);
n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0);
AF3 a=n*n;
AF3 b=n+AF3_(1.0/1023.0);b=b*b;
AF3 r=(c-b)*APrxMedRcpF3(a-b);
c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));}
#endif
//==============================================================================================================================
#if defined(A_GPU)&&defined(A_HALF)
AH1 FsrTepdDitH(AU2 p,AU1 f){
AF1 x=AF1_(p.x+f);
AF1 y=AF1_(p.y);
AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
AF1 b=AF1_(1.0/3.69);
x=x*a+(y*b);
return AH1(AFractF1(x));}
//------------------------------------------------------------------------------------------------------------------------------
void FsrTepdC8H(inout AH3 c,AH1 dit){
AH3 n=sqrt(c);
n=floor(n*AH3_(255.0))*AH3_(1.0/255.0);
AH3 a=n*n;
AH3 b=n+AH3_(1.0/255.0);b=b*b;
AH3 r=(c-b)*APrxMedRcpH3(a-b);
c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));}
//------------------------------------------------------------------------------------------------------------------------------
void FsrTepdC10H(inout AH3 c,AH1 dit){
AH3 n=sqrt(c);
n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0);
AH3 a=n*n;
AH3 b=n+AH3_(1.0/1023.0);b=b*b;
AH3 r=(c-b)*APrxMedRcpH3(a-b);
c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));}
//==============================================================================================================================
// This computes dither for positions 'p' and 'p+{8,0}'.
AH2 FsrTepdDitHx2(AU2 p,AU1 f){
AF2 x;
x.x=AF1_(p.x+f);
x.y=x.x+AF1_(8.0);
AF1 y=AF1_(p.y);
AF1 a=AF1_((1.0+sqrt(5.0))/2.0);
AF1 b=AF1_(1.0/3.69);
x=x*AF2_(a)+AF2_(y*b);
return AH2(AFractF2(x));}
//------------------------------------------------------------------------------------------------------------------------------
void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){
AH2 nR=sqrt(cR);
AH2 nG=sqrt(cG);
AH2 nB=sqrt(cB);
nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0);
nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0);
nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0);
AH2 aR=nR*nR;
AH2 aG=nG*nG;
AH2 aB=nB*nB;
AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR;
AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG;
AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB;
AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR);
AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG);
AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB);
cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0));
cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0));
cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));}
//------------------------------------------------------------------------------------------------------------------------------
void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){
AH2 nR=sqrt(cR);
AH2 nG=sqrt(cG);
AH2 nB=sqrt(cB);
nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0);
nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0);
nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0);
AH2 aR=nR*nR;
AH2 aG=nG*nG;
AH2 aB=nB*nB;
AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR;
AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG;
AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB;
AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR);
AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG);
AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB);
cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0));
cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0));
cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));}
#endif
void CurrFilter(AU2 pos)
{
AF3 c;
FsrRcasF(c.r, c.g, c.b, pos, con0);
imageStore(imgOutput, ASU2(pos), AF4(c, 1));
}
void main() {
FsrRcasCon(con0, sharpening_data);
AU2 gxy = ARmp8x8(gl_LocalInvocationID.x) + AU2(gl_WorkGroupID.x << 4u, gl_WorkGroupID.y << 4u);
CurrFilter(gxy);
gxy.x += 8u;
CurrFilter(gxy);
gxy.y += 8u;
CurrFilter(gxy);
gxy.x -= 8u;
CurrFilter(gxy);
}